Open Access

I B, NF- B Regulation Model: Simulation Analysis of Small Number of Molecules

EURASIP Journal on Bioinformatics and Systems Biology20082007:25250

DOI: 10.1155/2007/25250

Received: 21 March 2007

Accepted: 8 November 2007

Published: 24 January 2008

Abstract

The regulation of I B, NF- B is of foremost interest in biology as the transcription factor NF- B has multiple target genes. We have modeled a previously published model by Hoffmann et al. (2002) of I B, NF- B mathematically as discrete reaction systems. We have used stochastic algorithm to compare the results when there are large and small numbers of molecules available in a finite volume for each protein. Our results for small number of molecules show that with continuous presence of stimulation, nuclear NF- B oscillates continuously in every individual cell rather than damping, which was observed in cell population results. This characteristic of the system is missed when averaged behavior is studied.

[123456789101112131415161718192021222324252627282930313233343536]

Authors’ Affiliations

(1)
Bioengineering Department, Cell Systems Initiative, University of Washington
(2)
Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine
(3)
Statistics Department, University of Washington

References

  1. Ghosh S, May MJ, Kopp EB:NF- B and rel proteins: evolutionary conserved mediators of immune responses. Annual Review of Immunology 1998, 16: 225-260. 10.1146/annurev.immunol.16.1.225View ArticleGoogle Scholar
  2. Gonzalez-Crespo S, Levine M:Related target enhancers for dorsal and NF- B signaling pathways. Science 1994, 264(5156):255-258. 10.1126/science.8146656View ArticleGoogle Scholar
  3. Malek S, Huxford T, Ghosh G:I B functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF- B. Journal of Biological Chemistry 1998, 273(39):25427-25435. 10.1074/jbc.273.39.25427View ArticleGoogle Scholar
  4. Hoffmann A, Levchenko A, Scott ML, Baltimore D:The I B-NF- B signaling module: temporal control and selective gene activation. Science 2002, 298(5596):1241-1245. 10.1126/science.1071914View ArticleGoogle Scholar
  5. Nelson DE, Ihewaba AEC, Elliott M, et al.:Oscillations in NF- B signaling control the dynamics of gene expresion. Science 2004, 306(5696):704-708. 10.1126/science.1099962View ArticleGoogle Scholar
  6. Barken D, Wang CJ, Kearns J, Cheong R, Hoffmann A, Levchenko A:Comment on oscillations in NF- B signaling control the dynamics of the gene expression. Science 2005, 308(5718):52. 10.1126/science.1107904View ArticleGoogle Scholar
  7. Nelson DE, Horton CA, See V, et al.:Response to comment on oscillations in NF- B signaling control the dynamics of the gene expression. Science 2005, 308(5718):52. 10.1126/science.1107904View ArticleGoogle Scholar
  8. Lauffenburger DA: Receptors: Models for Binding, Trafficking and Signaling. Oxford University Press, Oxford, UK; 1993.Google Scholar
  9. Bhalla US, Iyengar R: Emergent properties of networks of biological signaling pathways. Science 1999, 283(5400):381-387. 10.1126/science.283.5400.381View ArticleGoogle Scholar
  10. Kholodenko BN: Negative feedbacka dn ultrasensitivity can bring about oscillationsin the mitogen-activated protein kinase cascades. European Journal of Biochemistry 2000, 267(6):1583-1588.View ArticleGoogle Scholar
  11. Bentele M, Lavrik I, Ulrich M, et al.: Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. Journal of Cell Biology 2004, 166(6):839-851. 10.1083/jcb.200404158View ArticleGoogle Scholar
  12. [http://physiome.org]
  13. [http://www.nrcam.uchc.edu/login/login.html]
  14. Luby-Phelps K, Weisiger RA: Role of cytoarchitecture in cytoplasmic transport. Comparative Biochemistry and Physiology B 1996, 115(3):295-306. 10.1016/S0305-0491(96)00176-9View ArticleGoogle Scholar
  15. Goodsell DS: Inside a living cell. Trends in Biochemical Sciences 1991, 16(6):203-206.View ArticleGoogle Scholar
  16. Berg OG: The influence of macromolecular crowding on thermodynamic activity: solubility and dimerization constants for spherical and dumbbell-shaped molecules in a hard-sphere mixture. Biopolymers 1990, 30(11-12):1027-1037. 10.1002/bip.360301104View ArticleGoogle Scholar
  17. Han J, Herzfeld J: Macromolecular diffusion in crowded solutions. Biophysical Journal 1993, 65(3):1155-1161. 10.1016/S0006-3495(93)81145-7View ArticleGoogle Scholar
  18. Lahav G, Rosenfeld N, Sigal A, et al.: Dynamcis of the p53-Mdm2 feedback loop in individual cells. Nature Genetics 2004, 36(2):147-150. 10.1038/ng1293View ArticleGoogle Scholar
  19. Vilar JMG, Kueh HY, Barkai N, Leibler S: Mechanisms of noise-resistance in genetic oscillators. Proceedings of the National Academy of Sciences of the United States of America 2002, 99(9):5988-5992. 10.1073/pnas.092133899View ArticleGoogle Scholar
  20. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP: Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005, 308(5721):523-529. 10.1126/science.1105809View ArticleGoogle Scholar
  21. Mcadams HH, Arkin A: Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the United States of America 1997, 94(3):814-819. 10.1073/pnas.94.3.814View ArticleGoogle Scholar
  22. McAdams H, Arkin H: It's noisy business! Genetic regulation at the nanomolecular scale. Trends Genetics 1999, 15(2):65-69. 10.1016/S0168-9525(98)01659-XView ArticleGoogle Scholar
  23. Gonze D, Halloy J, Goldbeter A: Robustness of circadian rhythms with respect to molecular noise. Proceedings of the National Academy of Sciences of the United States of America 2002, 99(2):673-678. 10.1073/pnas.022628299View ArticleGoogle Scholar
  24. Srivastava R, You L, Summers J, Yin J: Stochastic vs deterministic modeling of intracellular viral kinetics. Journal of Theoretical Biology 2002, 218(3):309-321. 10.1006/jtbi.2002.3078View ArticleMathSciNetGoogle Scholar
  25. Bhalla US: Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophysical Journal 2004, 87(2):733-744. 10.1529/biophysj.104.040469View ArticleGoogle Scholar
  26. Bhalla US: Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophysical Journal 2004, 87(2):745-753. 10.1529/biophysj.104.040501View ArticleGoogle Scholar
  27. [http://www.cellsystems.org/teams/modeling/projects/sigtran/index.html]
  28. Morton-Firth CJ, Bray D: Predicting temporal fluctuations in an intracellular signalling pathway. Journal of Theoretical Biology 1998, 192(1):117-128. 10.1006/jtbi.1997.0651View ArticleGoogle Scholar
  29. Gillepsie DT: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 1976, 22(4):403-434. 10.1016/0021-9991(76)90041-3View ArticleMathSciNetGoogle Scholar
  30. Gibson MA, Bruck J: Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry A 2000, 104(9):1876-1889. 10.1021/jp993732qView ArticleGoogle Scholar
  31. Gillespie DT: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 1977, 81(25):2340-2361. 10.1021/j100540a008View ArticleGoogle Scholar
  32. Elliott DF: Handbook of Digital Signal Processing: Engineering Applications. Academic Press, New York, NY, USA; 1987.MATHGoogle Scholar
  33. Grenander U, Szego G: Toeplitz Forms and Their Applications. Chelsea, New York, NY, USA; 1984.MATHGoogle Scholar
  34. [http://www.mathworks.com]
  35. Perkins ND, Gilmore TD:Good cop, badcop: the different faces of NF- B. Cell Death and Differentiation 2006, 13: 759-772. 10.1038/sj.cdd.4401838View ArticleGoogle Scholar
  36. Rayet B, Gélinas C: Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999, 18(49):6938-6947. 10.1038/sj.onc.1203221View ArticleGoogle Scholar

Copyright

© Anamika Sarkar et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.