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A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large
numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of
temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We
propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of
expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data
for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of
data sets of thousands of genes under different conditions.
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High-throughput gene expression techniques, such as olig-
onucleotide and cDNA microarrays, SAGE (series analysis
gene expression), and promoter arrays [1-5], make it pos-
sible to obtain large amounts of time series gene expres-
sion data in different organisms under various conditions.
These large datasets prove to be invaluable for determin-
ing coordinately regulated genes and the underlying regula-
tory networks among genes. Temporal gene expression pat-
terns have been used to define cell cycle regulated genes
and metabolic and genetic networks [6-10]. However, how
to extract expression patterns in temporal gene expression
data represents a challenging analytical problem particularly
when comparing data obtained under different growth con-
ditions.

Because high-throughput gene expression technologies
involve thousands of genes (or variables), reducing the di-
mensionality of the data can be a crucial issue for identifying
coordinately regulated gene or inferring gene regulation net-
works. The current solutions include clustering coregulated
genes from thousands of genes by similar expression profiles
via unsupervised analysis [11-13], and Bayesian networks
modeling [14]. Each method has its own merits and short-

comings. In temporal gene expression analysis, a main chal-
lenge is to extract the continuous representation of all genes
through the time course of the experiment. Aligning gene ex-
pression time series profiles based on dynamic time warp-
ing [15], hidden Markov model [16], local clustering [17]
and fitting time series data with cubic splines [18-20] have
been used. However, a significant challenge remains in the
comparisons of high-throughput temporal expression pro-
files obtained from same genes in different experimental con-
ditions where patterns may be shifted in time. The current
analysis methods do not specifically address the issue of time
delays between experiments or conditions.

Many mathematical and statistical methods have been
developed for identifying underlying patterns in complex
data with varieties of applications, such as signal classifica-
tion in speech processing, electrocardiography and sleep re-
search. These methods cluster points in multidimensional
space, and are routinely used in gene expression analysis. For
example they have been used to identify genes whose expres-
sion correlated with the cell cycle [21-23]. These methods are
readily applicable to many datasets. However, these strate-
gies have limitations when comparisons of temporal data be-
tween different conditions are being carried out. Over the
past few years, the wavelet has become an essential tool in
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genome analysis [24-27]. In this study, we propose the use
of wavelet transformation as a method to characterize struc-
ture at multiple positions and length scales. Wavelet trans-
forms are capable of providing the time and frequency infor-
mation simultaneously, hence giving a time-frequency repre-
sentation of the temporal gene expression signals, the wavelet
transformed data can be further analyzed by cluster analy-
sis. We demonstrate this approach with temporal expression
profiles for a single gene under 72 growth conditions. Clus-
tering of the data after wavelet transformation overcomes the
problem of temporal shifts in expression patterns observed
under different experimental conditions.

2. MATERIALS AND METHODS
2.1. Gene expression data

Temporal gene expression profiles were obtained using pro-
moter fusion technique. Briefly, the promoters of interest
are clones into a promoterless [uxCDABE operon on a plas-
mid vector pMS402 [28]. Promoter activity correlates with
light production generated by the luxCDABE gene products.
Therefore, the activity of the promoter fused upstream lux-
CDABE is directly measured as light production after the fu-
sion construct is introduced into the bacterium. The pro-
moter regions of the Pseudomonas aeruginosa rpoS gene was
amplified from P. aeruginosa PAO1 chromosomal DNA by
PCR using oligonucleotide primers [28]. The PCR amplified
promoter region were then cloned into the Xhol-BamHI sites
of pMS402 upstream of the promoterless luxCDABE genes
and transformed into PAO1 by electroporation. PCR, DNA
manipulation and transformation were performed following
general procedures. Overnight cultures of the reporter strain
were diluted 1 : 200 in a 96-well microtiter plate and the pro-
moter activity (CPS) and optical density at 620 nm (ODsgy)
were measured every 30 minutes for 24 hours in a victor?
multilabel counter. The details of the 72 growth conditions
will be described elsewhere.

2.2. Expression data wavelet transformation and
clustering analysis

To overcome the gene expression profile shift issue (time de-
lay) among different conditions, we first used continuous
wavelet analysis to transform all expression data by wavelet
transform; it decomposes temporal gene expression data in
both time and frequency domains. In wavelet transform we
take a real/complex valued continuous time function with
two main properties, (1) it will integrate to zero; (2) it is
square integrable. This function is called the mother wavelet.
The CWT or continuous wavelet transform of a function
f(t) with respect to a wavelet y(t) is defined as
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Here, a and b are real. W (a, b) is the transform coefficient of
f(t) for given a, b. Thus the wavelet transform is a function
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FiGure 1: Mother wavelet (dB2).

of two variables. For a given b, y,;,(¢) is a shift of y,(¢) by an
amount b along time axis. The variable b represents time shift
or translation. Since a determines the amount of time scaling
or dilation, it is referred to as scale or dilation variable. If a >
1, there is stretching of y(t) along the time axis whereas if 0 <
a < 1 there is a contraction of y(¢). Each wavelet coefficient
W (a, b) is a measure of the correlation of the input waveform
with a translated and dilated version of the mother wavelet.
By investigating the wavelet transform over different bases,
we adopted dB2 as the mother function (see Figure 1). The
output of the transform shows the correlation between the
signal and the wavelet as a function of time across a range of
scales. To avoid negative coefficients and in order to display
differences clearly, we define

S(a) = W2(a,b). (2)

Based on the squared coefficient S(a), we clustered the 72
conditions with the average linkage method [29]. The dis-
tance between two clusters is defined by

1
Dk = NN, > D d(xix)). (3)
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In average linkage the distance between two clusters is the
average distance between pairs of observations, one in each
cluster. Average linkage tends to join clusters with small vari-
ances, and is slightly biased toward producing clusters with
the same variance. All calculation was done by SAS and Mat-
lab.

3. RESULT AND ANALYSIS
3.1. Thevariation of gene expression profile

A large data set was generated from a unique gene expres-
sion experiment where activity of the promoter of the rpoS
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F1GURE 2: The rpoS gene expression profiles in 72 conditions and 48
time points. Because the strength of expression of the rpoS promoter
varies among conditions, the expression levels were normalized for
each condition with its maximum so that the expression level is the
range between 0 and 1.

gene in P. aeruginosa was measured under 72 growth condi-
tions. For each condition, measurements were obtained at 48
time points. Figure 1 shows the expression profile variation
of this gene in different experimental conditions. Because the
strength of expression of the rpoS gene varies among condi-
tions, that is, the expression pattern may be similar although
the magnitude of expression may vary, we normalized each
expression profile with its maximum, so all expression level
is in the range between 0 and 1. As expected, the gene expres-
sion profile varies significantly in different experiments and
conditions. As shown in Figure 2, the time point of maxi-
mum expression of the rpoS shifts among conditions, that is,
with clear expression profile shift or time delay phenomena.
To further evaluate the variation of the rpoS promoter activ-
ity over 72 conditions, we determined the mean and stan-
dard deviation of the gene in each condition. The fluctua-
tion of the mean and standard deviation of expression levels
of the rpoS, as shown in Figure 3, highlights the variation of
expression level and expression strength among conditions.
These results clearly show the expression profiles and levels
are condition-specific, that is, the regulation of the rpoS gene
varies in different conditions.

3.2. The wavelet transformation of gene
expression profile

Wavelet transformation is an analysis method that uses both
time and the frequency domains. It allows a time series to be
viewed in multiple resolutions, and each resolution reflects
a different frequency. The wavelet technique takes averages
and differences of a signal and breaks the signal down into
spectrum. In the gene expression analysis, we assume that
any gene expression level is a comprehensive result of gene
effects and condition effects, that is, the expression profile
shift or time delay is caused by the conditions which dictate
the activation order and expression strength of the rpoS gene.
The profile shifts or time delays certainly make comparison
of expression patterns among conditions problematic. Over-
coming this time delay, the wavelet transform addresses it by
using dB2 (Figure 1) mother function that can be scaled. If
the signal and wavelet are in a good match, then the corre-
lation between the signal and the wavelet is high, resulting
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FIGURE 3: The fluctuation of standard deviation of rpoS promoter
activity in 72 different conditions and 48 time points. The blue line
is mean and the error bar is standard deviation of gene in each con-
dition.
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F1GURE 4: The power plot of the wavelet transformation of the rpoS
gene promoter activity profiles obtained under 72 conditions. The
mother wavelet id dB2 and the coefficients of wavelet transforma-
tion were squared.

in a large coefficient. The coefficients of wavelet transforma-
tion indicate correlation intensities between wavelet function
and expression profile if the expression signal level is between
0 and 1. When the wavelet is highly compressed it extracts
the localized high-frequency details of the expression signal.
When the wavelet is fully diluted, the length of the wavelet is
more comparable to the length of the gene expression signal
and therefore it extracts the low frequency trends of the sig-
nal. In order to overcome the issue in temporal gene expres-
sion data analysis we take an approach using wavelet trans-
formation. The transformation results of the gene rpoS over
72 conditions, as shown in Figure 4, demonstrate the squared
coefficients with a bell-shaped curve, the curves of the dif-
ferent conditions vary in skew and kurtosis which represent
the difference of expression profiles. If expression profiles are
similar, the bell-shaped curve will be very similar and close;
otherwise, they will disperse. The wavelet analysis is able to
overcome the profile shift problem, meanwhile, it is worth
noting that the analysis loses time series information.

3.3. Clustering analysis and evaluation

To evaluate the behavior of gene expression under differ-
ent culture conditions, expression profiles are typically com-
pared using cluster analysis. This provides a comparison of
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FIGURE 5: The cluster tree of 72 conditions of the rpoS gene expression before wavelet transformation based on the 48 time points measure-

ments.

patterns of expression such that those with similar patterns
of expression will fall close together on the hierarchical tree
while those with dissimilar patterns will be far apart. To eval-
uate the effect of wavelet transformation, we clustered the
data before and after transformation using average linkage
method. The hierarchical cluster trees are shown in Figures
5 and 6. Note that the numerical values used in the two fig-
ures differ and consequently the distance measures are not
directly comparable.

We would predict that genes with similar expression pro-
files before wavelet transformation would cluster together
in both Figures 5 and 6. Wavelet transformation would not
make the expression patterns dissimilar. To illustrate this we
have plotted the expression data for two conditions (C1T23
and C2T23) that cluster closely in Figure 7. We can see that
the activity profiles of the rpoS promoter are very simi-
lar in these two conditions (Figure 7(a)) and likewise the
power plots of their wavelet transformation are also simi-
lar (Figure 7(b)). As expected they also clustered together in
Figure 5.

To illustrate the effect of the wavelet transformation,
we highlight the expression of two conditions (C1T7 and
C2T?7) that cluster close together after wavelet transforma-
tion (as in Figure 5) but not before it (as in Figure 4). We
would predict that these will have similar expression patterns
but with a time shift between the experimental conditions.
This is clearly illustrated in Figure 8(a). This temporal shift
is sufficient to prevent close clustering of these conditions
in Figure 4. By contrast, the profiles appear very similar af-

ter wavelet transformation (Figure 8(b)) and the two condi-
tions cluster close together in Figure 5. In this experiment,
the growth medium used in C1T7 and C2T2 was the same
and the expression profile would be expected to match how-
ever experimental variables leading to different initial con-
ditions. The results indicate that wavelet transformation can
extract expression pattern information and overcome diffi-
culties that arise because of temporal delays in patterns of
expressions between conditions or experiments.

4. DISCUSSION

To deeply understand gene temporal expression behavior
and interactions in cells is a fundamental task in functional
genomics. While methods for obtaining high-throughput
temporal gene expression data are readily available, meth-
ods and strategies for analysis of these complex data sets are
still emerging. Because the unique feature of temporal gene
expression data is autocorrelation between successive points,
the immediate goals are to extract and to compare the funda-
mental patterns of gene expression inherent in the data. Most
of the current methods are based on certain distances be-
tween expressed genes or variables (conditions), such as hier-
archical clustering, self-organizing maps, relevance network,
principal components analysis and machine learning. Appli-
cation of clustering analysis directly to the expression data
ignores some basic features of temporal expression data and
more over can be complicated by temporal shifts or time de-
lays between experiments. These temporal shifts arise not
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FiGure 6: The cluster tree of 72 conditions of the rpoS gene expression after wavelet transformation based on the 48 time points measure-
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FIGURE 7: (a) The expression profiles of the rpoS in conditions C1T23 and C2T23 and (b) the power of the wavelet transform.

Time delay : /\J
(b)

F1GURE 8: (a) The expression profiles of the rpoS in conditions C1T7 and C2T7 and (b) the power of the wavelet transform.
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because of intrinsic features of the expression pattern but
because of differences in initial conditions between experi-
ments. These are often unavoidable experimental variables.
Dynamic time warping is a discrete method similar to se-
quence alignment algorithms [5] that can be used to align
time series data. It involves many degrees of freedom and the
time points can “stop” or go “backwards” in the alignment.
Opverfitting can also be a problem with this method. The cu-
bic spline is a powerful technique for data fitting, interpola-
tion, extrapolation, and visualization [20], and permits the
principled estimation of unobserved time-points and dataset
alignment. Each temporal gene expression profile is modeled
as a cubic spline (piecewise polynomial) that is estimated
from the observed expression data. It constrains the spline
coefficients of genes in the same cluster to have same or sim-
ilar expression patterns. The splines are piecewise-smooth
polynomials that can be used to represent functions over
large intervals, where it would be impractical to use a sin-
gle approximating polynomial. As for the clustering analysis
with the cubic splines, especially in large scale of temporal
gene expression data, further research and comparison are
needed.

In this paper, we firstly transformed temporal gene ex-
pression data with continuous wavelet analysis and then we
did hierarchical clustering analysis. Average linkage method
was used because it proceeds by first finding pairs of expres-
sion profiles that are most similar, joining them, calculating
the (sometimes weighted) average between the members of
the joined cluster, recalculating the pairwise distance, and
treating the average profile as one profile, and repeating the
procedure until all profiles are joined. Average linkage clus-
tering can be conducted using all-pairwise-sample average of
differences or using cluster average differences. The latter is
also known as centroid clustering, but centroids can be cal-
culated using methods other than simple averages.

It is worth noting that wavelet analysis and the Fourier
transformation (FT) are two widely used methods in signal
processing. In its original form, the FT assumes that the ex-
pression signal exists for all time. This for practical purposes
is not a realistic assumption in temporal gene expression
and does not give any information about how the expres-
sion signal changes with respect to time. This is not a prob-
lem when the gene expression signal being analyzed is sta-
tionary, that is when the statistical properties of the expres-
sion signal are not changing with time. All gene expression
signals, however, are nonstationary. It is especially necessary
to identify and locate the changing frequency characteristics
of the gene expression signals. An alternative FT, which is
called the short-time Fourier transform (STFT), is a time-
dependent or windowed-Fourier transformation. It attempts
to analyze nonstationary signals by dividing the whole sig-
nal into shorter data frames, but one of the limitations of
the STFT is that the timeframe for analysis is fixed. Wavelet
transformation is a measure of similarity between the basis
functions (wavelets) and gene expression profiles, and the
calculated CWT coefficients refer to the closeness of the gene
expression profile to the wavelet at the current scale. The
flexible approach uses a scalable window. The advantages of

the method are a compressed window for analyzing high-
frequency details and a diluted window for uncovering low-
frequency trends within the signal. Wavelets are also well lo-
calized in frequency, although not as well as sinusoids. Since
wavelet analysis incorporates the concept of scale into the
wavelet equation it is suited to resolve the transient nature
of gene expression data.

Then choosing appropriate scales and the number of
scales are imminent issues. Scale is the inverse of frequency.
Once the mother wavelet is chosen, the computation will
start from high frequencies and proceed towards low fre-
quencies. This first value of scale will correspond to the most
compressed wavelet. As the value of scale is increased, the
wavelet will dilate. Smaller scales (high frequencies) have bet-
ter scale resolution which corresponds to poorer frequency
resolution. Similarly, large scales have better frequency res-
olution. From the results presented here, it is apparent that
wavelets are better suited to the analysis of transient gene ex-
pression signals, since they are well localized in time, whereas
sinusoids extend over all time. We also need to emphasize
that although the wavelet analysis overcomes the time delay
or profile shift, the transformation will lose temporal infor-
mation if we need it, so the analysis is application dependent.

In summary, the paper presents an alternative way to ex-
tract expression patterns in temporal gene expression data
with continuous wavelet analysis. It has been demonstrated
that the application of wavelet transformation to gene tem-
poral expression data is feasible. We anticipate that the
wavelet analysis and transformation could be used in large
scale temporal gene expression research and single cell ex-
periments. It is of particular value in comparison of tempo-
ral expression profiles obtained under different conditions or
from different experiments. The pattern recognition is of im-
portant value on monitoring simultaneously the expression
patterns of thousands of genes during cellular differentiation
and responses.
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