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1. INTRODUCTION

With the completion of the human genome project and suc-
cessful sequencing genomes of many other organisms, em-
phasis of postgenomic research has been shifted to the un-
derstanding of functions of genes [1]. We investigate in this
paper reverse engineering gene regulatory networks (GRNs)
based on time-series microarray data. GRNs are the func-
tioning circuitry in living organisms at the gene level. They
display the regulatory relationships among genes in a cellular
system. These regulatory relationships are involved directly
and indirectly in controlling the production of protein and
in mediating metabolic processes. Understanding GRNs can
provide new ideas for treating complex diseases and break-
throughs for designing new drugs.

GRNs cannot be measured directly but can be inferred
based on their inputs and outputs. This process of recovering
GRNs from their inputs and outputs is referred to as reverse
engineering GRNs [2]. The inputs of GRNs are a sequence
of signals and the outputs are gene expressions at either the
mRNA level or the protein level. One popular technology

that measures expressions of a large amount of gene at the
mRNA levels is microarray. It is not surprising that microar-
ray data have been a popular source for uncovering GRNs
[3, 4]. Of particular interest to this paper are time-series mi-
croarray data, which are generated from a cell cycle process.
Using the time-series microarray data, we aim to uncover the
underlying GRNs that govern the process of cell cycles.

Mathematically, reverse engineering GRNs are a tradi-
tional inverse problem, whose solutions require proper mod-
eling and learning from data. Despite many existing methods
for solving inverse problems, solutions to the GRNs prob-
lem are however not trivial. Special attention must be paid
to the enormously large scale of the unknowns and the diffi-
culty from the small sample size, not to mention the inher-
ent experimental defects, noisy readings, and so forth. These
call for powerful mathematic modeling together with reliable
inference. At the same time, approaches for integrating dif-
ferent types of relevant data are desirable. In the literature,
many different models have been proposed for both static,
cell cycle networks including probabilistic Boolean net-
works [5, 6], (dynamic) Bayesian networks [7-9], differential
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equations [10], and others [11, 12]. Unlike in the case of
static experiments, extra effort is needed to model tempo-
ral dependency between samples for the time-series experi-
ments. Such time-series models can in turn complicate the
inference, thus making the task of reverse engineering even
tougher than it already is.

In this paper, we apply dynamic Bayesian networks
(DBNs) to model time-series microarray data. DBNs have
been applied to reverse engineering GRNs in the past [13—
18]. Differences among the existing work are the specific
models used for gene regulations and the detailed inference
objectives and algorithms. These existing models include
discrete binomial models [14, 17], linear Gaussian models
[16, 17], and spline function with Gaussian noise [18]. We
choose to use the linear Gaussian regulatory model in this
paper. Linear Gaussian models model the continuous gene
expression level directly, thus preventing loss of information
in using discrete models. Even though linear Gaussian mod-
els could be less realistic, network inference over linear Gaus-
sian models is relatively easier than that for nonlinear and/or
non Gaussian models, therefore leading to more robust re-
sults. It has been shown in [19] that if taking both computa-
tional complexity and inference accuracy into consideration,
linear Gaussian models are favored over nonlinear regulatory
models. In addition, this model actually models the joint ef-
fect of gene regulation and microarray experiments and the
model validity is better evaluated from the data directly. In
this paper, we provide the statistical test of the validity of the
linear Gaussian model.

To learn the proposed DBNs from time-series data, we
aim at soft Bayesian solutions, that is, the solutions that
provide the a posteriori probabilities (APPs) of the network
topology. This requirement separates the proposed solutions
with most of the existing approaches such as greedy search
and simulated-annealing-based algorithms, all of which pro-
duce only point estimates of the networks and are considered
as “hard” solutions. The advantage of soft solutions has been
demonstrated in digital communications [20]. In the con-
text of GRNs, the APPs from the soft solutions provide valu-
able measurements of confidence on inference, which is dif-
ficult with hard solutions. Moreover, the obtained APPs can
be used for Bayesian data integration, which will be demon-
strated in the paper. Soft solutions including Markov chain
Monte Carlo (MCMC) sampling [21, 22] and variational
Bayesian expectation maximization (VBEM) [16] have been
proposed for learning the GRNs. However, MCMC sampling
is only feasible for small networks due to its high complexity.
In contrast, VBEM has been shown to be much more effi-
cient. However, the VBEM algorithm in [16] was developed
only for parameter learning. It therefore cannot provide the
desired APPs of topology. In this paper, we propose a new
variational Bayesian structural EM (VBSEM) algorithm that
can learn both parameters and topology of a network. The al-
gorithm still maintains the general feature of VBEM for hav-
ing low complexity, thus it is appropriate for learning large
networks. In addition, it estimates the APPs of topology di-
rectly and is suitable for Bayesian data integration. To this
end, we discuss a simple Bayesian strategy for integrating two

microarray data sets by using the APPs obtained from VB-
SEM.

We apply the VBSEM algorithm to uncover the yeast cell
cycle networks. To obtain the statistics of the VBSEM infer-
ence results and to overcome the difficulty of the small sam-
ple size, we apply a moving block bootstrap method. Un-
like conventional bootstrap strategy, this method is specifi-
cally designed for time-series data. In particular, we propose
a practical strategy for determining the block length. Also, to
serve our objective of obtaining soft solutions, we apply the
bootstrap samples for estimating the desired APPs. Instead
of making a decision of the network from each bootstrapped
data set, we make a decision based on the bootstrapped APPs.
This practice relieves the problem of small sample size, mak-
ing the solution more robust.

The rest of the paper is organized as follows. In Section 2,
DBNs modeling of the time-series data is discussed. The
detailed linear Gaussian model for gene regulation is also
provided. In Section 3, objectives on learning the networks
are discussed and the VBSEM algorithm is developed. In
Section 4, a Bayesian integration strategy is illustrated. In
Section 5, the test results of the proposed VBEM on the simu-
lated networks and yeast cell cycle data are provided. A boot-
strap method for estimating the APPs is also discussed. The
paper concludes in Section 6.

2. MODELING WITH DYNAMIC
BAYESIAN NETWORKS

Like all graphical models, a DBN is a marriage of graphical
and probabilistic theories. In particular, DBNs are a class of
directed acyclic graphs (DAGs) that model probabilistic dis-
tributions of stochastic dynamic processes. DBNs enable easy
factorization on joint distributions of dynamic processes into
products of simpler conditional distributions according to
the inherent Markov properties, and thus greatly facilitate the
task of inference. DBNs are shown to be a generalization of a
wide range of popular models, which include hidden Markov
models (HMM:s) and Kalman filtering models, or state-space
models. They have been successfully applied in computer vi-
sion, speech processing, target tracking, and wireless com-
munications. Refer to [23] for a comprehensive discussion
on DBNE.

A DBN consists of nodes and directed edges. Each node
represents a variable in the problem while a directed edge
indicates the direct association between the two connected
nodes. In a DBN, the direction of an edge can carry the tem-
poral information. To model the gene regulation from cell
cycle using DBNs, we assume to have a microarray that mea-
sures the expression levels of G genes at N + 1 evenly sampled
consecutive time instances. We then define a random variable
matrix Y € R>N*D with the (i, n)th element y;(n — 1) de-
noting the expression level of gene i measured at time n — 1
(see Figure 1). We further assume that the gene regulation
follows a first-order time-homogeneous Markov process. As
a result, we need only to consider regulatory relationships
between two consecutive time instances and this relation-
ship remains unchanged over the course of the microarray
experiment. This assumption may be insufficient, but it will
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FIGURE 1: A dynamic Bayesian network modeling of time-series expression data.

facilitate the modeling and inference. Also, we call the regu-
lating genes the “parent genes,” or “parents” for short.

Based on these definitions and assumptions, the joint
probability p(Y) can be factorized as p(Y) = [ <,y p(y(n)
| y(n— 1)), where y(n) is the vector of expression levels of all
genes at time n. In addition, we assume that given y(n — 1),
the expression levels at n become independent. As a result,
p(y(n) | y(n — 1)), for all n, can be further factorized as
py(n) | y(n— 1)) = [Ti<izg p(yi(n) | y(n — 1)). These fac-
torizations suggest the structure of the proposed DBNGs illus-
trated in Figure 1 for modeling the cell cycle regulations. In
this DBN, each node denotes a random variable in Y and all
the nodes are arranged the same way as the corresponding
variables in the matrix Y. An edge between two nodes de-
notes the regulatory relationship between the two associated
genes and the arrow indicates the direction of regulation. For
example, we see from Figure 1 that genes 1, 3, and G regulate
gene i. Even though, like all Bayesian networks, DBNs do not
allow circles in the graph, they, however, are capable of mod-
eling circular regulatory relationship, an important property
that is not possessed by regular Bayesian networks. As an ex-
ample, a circular regulation can be seen in Figure 1 between
genes 1 and 2 even though no circular loops are used in the
graph.

To complete modeling with DBNs, we need to define the
conditional distributions of each child node over the graph.
Then the desired joint distribution can be represented as a
product of these conditional distributions. To define the con-
ditional distributions, we let pa,;(n) denote a column vec-
tor of the expression levels of all the parent genes that reg-
ulate gene i measured at time n. As an example in Figure 1,
pa,(n)T = [y1(n), y3(n), yg(n)]. Then, the conditional distri-
bution of each child node over the DBNs can be expressed as
p(yi(n) | pa;(n—1)), for all i. To determine the expression of
the distributions, we assume linear regulatory relationship,
that is, the expression level of gene i is the result of linear
combination of the expression levels of the regulating genes
at previous sample time. To make further simplification,
we assume the regulation is a time-homogeneous process.

Mathematically, we have the following expression:

yi(n) = wiTpai(n —1)+ei(n), n=12,...,N, (1)
where w; € R is the weight vector independent of time n and
ei(n) is assumed to be white Gaussian noise with variance o7.
We provide in Section 5 the statistical test of the validity of
white Gaussian noise. The weight vector is indicative of the
degree and the types of the regulation [16]. A gene is upreg-
ulated if the weight is positive and is down-regulated other-
wise. The magnitude (absolute value) of the weight indicates
the degree of regulation. The noise variable is introduced to
account for modeling and experimental errors. From (1), we
obtain that the conditional distribution is a Gaussian distri-
bution, that is,

p(yi(n) | pa,(n—1)) = N (w/pa,(n—1),0%). (2)
In (1), the weight vector w; and the noise variance o7 are the
unknown parameters to be determined.

2.1. Objectives

Based on the above dynamic Bayesian networks formulation,
our work has two objectives. First, given a set of time-series
data from a single experiment, we aim at uncovering the
underlying gene regulatory networks. This is equivalent to
learning the structure of the DBNS. In specific, if we can de-
termine that genes 2 and 3 are the parents of gene 1 in the
DBNs, there will be directed links going from gene 2 and
3 to gene 1 in the uncovered GRNs. Second, we are also
concerned with integrating two data sets of the same net-
work from different experiments. Through integrating the
two data sets, we expect to improve the confidence of the
inferred networks obtained from a single experiment. To
achieve these two objectives, we propose in the following
an efficient variational Bayesian structural EM algorithm to
learn the network and a Bayesian approach for data integra-
tion.
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3. LEARNING THE DBN WITH VBSEM

Given a set of microarray measurements on the expression
levels in cell cycles, the task of learning the above DBN con-
sists of two parts: structure learning and parameter learning.
The objective of structure learning is to determine the topol-
ogy of the network or the parents of each gene. This is essen-
tially a problem of model or variable selection. Under a given
structure, parameter learning involves the estimation of the
unknown model coefficients of each gene: the weight vector
w; and the noise variance o,»z, for all i. Since the network is
fully observed and, given parent genes, the gene expression
levels at any given time are independent, we can learn the
parents and the associated model parameters of each gene
separately. Thus we only discuss in the following the learning
process on gene i.

3.1. ABayesian criterion for network
structural learning

Let 8; = {851),81@, ceo SEK)} denote a set of K possible net-
work topologies for gene i, where each element represents a
topology derived from a possible combination of the parents
of gene i. The problem of structure learning is to select the
topology from 4; that is best supported by the microarray
data.

For a particular topology S,(-k), we use w,(k), pagk), egk) and
03, to denote the associated model variables. We can then ex-

press (1) for S§k> in a more compact matrix-vector form
k) (k k
y, = a4 o) )

where yi = [yi(1),..., y:(\N)]7, Pal® = [pal?(0),pa® (1),
opa (N = DT, e = [e(1),6(2),..., e (N)]7, and
wfk) is independent of time .

The structural learning can be performed under the
Bayesian paradigm. In particular, we are interested in calcu-
lating the a posteriori probabilities of the network topology
p(S§k> | Y), for all k. The APPs will be important for the
data integration tasks. They also provide a measurement of
confidence on inferred networks. Once we obtain the APPs,
we can select the most probable topology S; according to the
maximum a posteriori (MAP) criterion [24], that is,

Si = arg max p(SEk) Y). (4)
sWes;
The APPs are calculated according to the Bayes theorem,
(vi | 7Y ) p(s 1Y)
plyil Yo)

p(s®y) =2

(5)
_ plyi | Pa”)p(s})
plyil Y)) ’

where Y_; represents a matrix obtained by removing y; from
Y, the second equality is arrived at from the fact that given

S,(k), yi depends on Y_; only through Pagk) , and the last equa-
tion is due to that given Pa,(k), sﬁ"’ is known automatically

but S,(k) cannot be determined from Y_;. Note also that there

is a slight abuse of notation in (4). Y in p(SEk) | 'Y) denotes a
realization of expression levels measured from a microarray
experiment.

To calculate the APPs according to (5), the marginal like-
lihood p(y; | Pa,(»k)) and the marginalization constant p(y; |
Y_;) need to be determined. It has been shown that with con-
jugate priors on the parameters, we can obtain p(y; | Pa,gk))
analytically [21]. However, p(y; | Y-;) becomes computa-
tionally prohibited for large networks because computing
p(yi | Y_;) involves summation over 26 terms. This diffi-
culty with p(y; | Y_;) makes the exact calculation of the APPs
infeasible. Numerical approximation must be therefore em-
ployed to estimate the APPs instead. Monte Carlo sampling-
based algorithms have been reported in the literature for this
approximation [21]. They are however computationally very
expensive and do not scale well with the size of networks.
In what follows, we propose a much more efficient solution
based on variational Bayesian EM.

3.2. Variational Bayesian structural
expectation maximization

To develop the VBSEM algorithm, we define a G-dimension-
al binary vector b; € {0,1}, where b;(j) = 1 if gene j is a
parent of gene i in the topology S; and b;(j) = 0 otherwise.
We can actually consider b; as an equivalent representation of
Si and finding the structure S; can thus equate to determining
the values of b;. Consequently, we can replace S; in all the
above expressions by b; and turn our attention to estimate
the equivalent APPs p(b; | Y).

The basic idea behind VBSEM is to approximate the
intractable APPs of topology with a tractable distribution
q(b;). To do so, we start with a lower bound on the normal-
izing constant p(y; | Y-;) based on Jensen’s inequality

Inp(yi | Y-:)

= anJdeip(Yi | b3, 0;) p(bi) p(6:) ©
b;
- ia . nP(biaYi | 0:) np(oi)}
> JdelQ(ez) [%q(b,)l (b)) +1 q(0,) >
(7)

where 0; = {w;, 01-2} and ¢(0;) is a distribution introduced for
approximating the also intractable marginal posterior distri-
bution of parameters p(0; | Y). The lower bound in (7) can
serve as a cost function for determining the approximate dis-
tributions q(b;) and q(6;), that is, we choose g(b;) and g(0;)
such that the lower bound in (7) is maximized. The solution
can be obtained by variational derivatives and a coordinate
ascent iterative procedure and is shown to include the fol-
lowing two steps in each iteration:

VBE step:
q(Hl) (bl) = i exp |: Jdﬂiq(t) (0,) ll’lp(b,',yi | 01‘):|, (8)
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The VBSEM algorithm

(1) Initialization

Initialize the mean and the covariance matrices of the

approximate distributions as described in Appendix A.
(2) VBE step: structural learning

Calculate the approximate posterior distributions of
topology g(b;) using (B.1)
(3) VBM step: parameter learning

Calculate the approximate parameter posterior
distributions q(6;) using (B.5)
(4) Compute F

Compute the lower bound as described in Appendix A. If
F increases, go to (2). Otherwise, terminate the algorithm.

ArcoriTHM 1: The summary of VBSEM algorithm

VBM step:

q(t+1) (0;) = %p(ei) exp [ Z q(”l) (bi) In p(b,y; | ei)] )
i b;
)

where t and t+1 are iteration numbers and Zy,, and Zg, are the
normalizing constants to be determined. The above proce-
dure is commonly referred to as variational Bayesian expecta-
tion maximization algorithm [25]. The VBEM can be consid-
ered as a probabilistic version of the popular EM algorithm
in the sense that it learns the distribution instead of finding
a point solution as in EM. Apparently, to carry out this itera-
tive approximation, analytical expressions must exist in both
VBE and VBM steps. However, it is difficult to come up with
an analytical expression at least in the VBM step since the
summation is NP hard. To overcome this problem, we en-
force the approximation g(b;) to be a multivariate Gaussian
distribution. The Gaussian assumption on the discrete vari-
able b; facilitates the computation in the VBEM algorithm,
circumventing the 2¢ summations. Although p(b; | Y) is a
high-dimensional discrete distribution, the defined Gaussian
approximation will guarantee the approximations to fall in
the exponential family, and as a result the subsequent com-
putations in the VBEM iterations can be carried out exactly
[25]. In specific, by choosing conjugate priors for both 6; and
b; as described in Appendix A, we can show that the calcula-
tions in both VBE and VBM steps can be performed analyt-
ically. The detailed derivations are included in Appendix B.
Unlike the common VBEM algorithm, which learns only the
distributions of parameters, the proposed VBEM learns the
distributions of both structure and parameters. We, there-
fore, call the algorithm VB structural EM (VBSEM). The al-
gorithm of VBSEM for learning the DBNs under study is
summarized in Algorithm 1.

When the algorithm converges, we obtain g(b;), a multi-
variate Gaussian distribution and q(6;). Based on g(b;), we
need then to produce a discrete distribution as a final esti-
mate of p(b;). Direct discretization in the variable space is
computationally difficult. Instead, we propose to work with
the marginal APPs from model averaging. To this end, we

first obtain g(b;(I)), for all l from g(b;) and then approximate
the marginal APPs p(b;(I) | Y), for all [, by

q(bi(l) = 1)
(bi(1) = 1) +q(b:(I) = 0)°
Instead of the MAP criterion, decisions on b; can be then

made in a bitwise fashion based on the marginal APPs. In
specific, we have

541 = {1 it p(bi(1) | Y) = p, o

plbi() =11Y) = p (10)

0 otherwise,

where p is a threshold. When Ei(l ) = 1,itimplies that gene [ is
aregulator of gene i in the topology of gene i. Meanwhile, pa-
rameters can be learned from ¢(0;) easily based on the mini-
mum mean-squared-error criterion (MMSE) and they are

- o P

Wi = my,, o =% (12)

where my,, 8, and « are defined in Appendix B according to
(B.5).

4. BAYESIAN INTEGRATION OF TWO DATA SETS

A major task of the gene network research is to integrate all
prevalent data sets about the same network from different
sources so as to improve the confidence of inference. As indi-
cated before, the values of b; define the parent sets of gene i,
and thus the topology of the network. The APPs obtained
from the VBSEM algorithm provide us with an avenue to
pursue Bayesian data integration.

We illustrate here an approach for integrating two mi-
croarray data sets Y! and Y?, each produced from an exper-
iment under possibly different conditions. The premise for
combining the two data sets is that they are the experimen-
tal outcomes of the same underlying gene network, that is,
the topologies S; or b;, for all i are the same in the respec-
tive data models. Direct combination of the two data sets at
the data level requires many preprocesses including scaling,
alignment, and so forth. The preprocessing steps introduce
noise and potential errors to the original data sets. Instead,
we propose to perform data integration at the topology level.
The objective of topology-level data integration is to obtain
the APPs of b; from the combined data sets p(b; | Y',Y?) and
then make inference on the gene network structures accord-
ingly.

To obtain p(b; | Y',Y?), we factor it according to the
Bayes rule as

p(Y2 1 b)p(Y' | b)p(b;)

P = T )

(13)
_ p(Y 1 b)p(bi Y
p(Y?) ’
where p(Y? | b;) is the marginalized likelihood functions of
dataset 2 and p(b; | Y') is the APPs obtained from data set 1.
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The above equation suggests a simple scheme to integrate the
two data sets: we start with a data set, say Y1, and calculate the
APPs p(b; | Y!); then by considering p(b; | Y!) as the prior
distribution, the data set Y! is integrated with Y? according
to (13). By this way, we obtain the desired APPs p(b; | Y',Y?)
from the combined data sets. To implement this scheme, the
APPs of the topology must be computed and the proposed
VBSEM can be applied for the task. This new scheme pro-
vides a viable and efficient framework for Bayesian data inte-
gration.

5. RESULTS
5.1. Teston simulated systems

5.1.1.  Study based on precision-recall curves

In this section, we validate the performance of the proposed
VBSEM algorithm using synthetic networks whose charac-
teristics are as realistic as possible. This study was accom-
plished through the calculation of the precision-recall curves.
Among the scientific community in this field, it is common
to employ the ROC analysis to study the performance of
a proposed algorithm. However, since genetic networks are
sparse, the number of false positives far exceeds the number
of true positives. Thus, the specificity is inappropriate as even
small deviation from a value of 1 will result in a large number
of false positives. Therefore, we choose the precision-recall
curves in evaluating the performance. Precision corresponds
to the expected success rate in the experimental validation of
the predicted interactions and it is calculated as Tp/(Tp+Fp),
where Tp is the number of true positives and Fp is the num-
ber of false positives. Recall, on the other hand, indicates the
probability of correctly detecting a true positive and it is cal-
culated as Tp/(Tp+Fy ), where Fy is the number of false nega-
tives. In a good system, precision decreases as recall increases
and the higher the area under the curve is the better the sys-
tem is.

To accomplish our objective, we simulated 4 networks
with 30, 100, 150, and 200 genes, respectively. For each tested
network, we collected only 30 time samples for each gene,
which mimics the realistic small sample scenario. Regarding
the regulation process, each gene had either none, one, two,
or three parents. Besides, the number of parents was selected
randomly for each gene. The weights associated to each reg-
ulation process were also chosen randomly from an interval
that contains the typical estimated values when working with
the real microarray data. As for the nature of regulation, the
signs of the weights were selected randomly as well. Finally,
the data values of the network outputs were calculated using
the linear Gaussian model proposed in (1). These data values
were taken after the system had reached stationarity and they
were in the range of the observations corresponding to real
microarray data.

In Figure 2, the precision-recall curves are plotted for dif-
ferent settings. In order to construct these curves, we started
by setting a threshold p for the APPs. This threshold p is be-
tween 0 to 1 and it was used as in (11): for each possible reg-
ulation relationship between two genes, if its APP is greater

TaBLE 1: Area under each curve.

G =30
0.8007

G =100
0.7253

G =150
0.6315

G =200
0.5872

Setting
AUC

Recall

0.1
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Precision
— 30 genes —— 150 genes
—— 100 genes —— 200 genes

F1GURE 2: Precision-recall curve.

than p, then the link is considered to exist, whereas if the
APP is lower than p, the link is not considered. We calcu-
lated the precision and the recall for each selected threshold
between 0 and 1. We plotted the results in blue for the case
with G = 30, black for G = 100, red for G = 150, and green
for G = 200. As expected, the performance got worse as the
number of genes increases. One measure of this degradation
is shown in Table 1 where we calculated the area under each
curve (AUC).

To further quantify the performance of the algorithms,
we calculated the F-score. F-score constitutes an evaluation
measure that combines precision and recall and it can be cal-
culated as

1

Fa= a(1/precision) + (1 — a)(1/recall)’ (14)

where « is a weighting factor and a large a means that the
recall is more important, whereas a small @ means that pre-
cision is more important. In general, « = 0.5 is used, where
the importance of precision and the importance of recall are
even and F, is called harmonic mean. This value is equal to 1
when both precision and recall are 100%, and 0 when one of
them is close to 0. Figure 3 depicts the value of the harmonic
mean as a function of the APP threshold p for the VBSEM al-
gorithm. As it can be seen, the performance of the algorithm
for G = 30 is better than the performance for any other set-
ting. However, we can also see that there is almost no per-
formance degradation between the curve corresponding to
G = 30 and the one for G = 100 in the APP threshold inter-
val from 0.5 to 0.7. The same observation can be obtained for
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TasLE 2: Computation time for different sizes of networks.

Setting G =100 G;=200 G,=500 G,=1000
Computation | 145671 2065132  889.8120 12891.8732
time (s)

TaBLE 3: Number of errors in 100 Monte Carlo trials.

No. of errors G=5N-=5 G=5N=10
VBEM (no. of

iterations = 10) 62 !

Gibbs sampling

(500 samples) 126 >

curves G = 150 and G = 200 in the interval from 0.5 to 0.6.
In general, in the interval from 0.5 to 0.7, the degradation of
the algorithm performance is small for reasonable harmonic
mean values (i.e., > 0.5).

To demonstrate the scalability of the VBSEM algorithm,
we have studied the harmonic mean for simulated networks
characterized by the following settings: (G; = 1000, N; =
400), (G, = 500, N, = 200), (G5 = 200, N5 = 80), and
(G4 = 100, N4 = 40). As it can be noticed, the ratio G;/N; has
been kept constant in order to maintain the proportion be-
tween the amount of nodes in the network and the amount of
information (samples). The results were plotted in Figure 4
where we have represented the harmonic mean as a func-
tion of the APP threshold. The closeness of the curves at APP
threshold equal to 0.5 supports the good scalability of the
proposed algorithm. We have also recorded the computation
time of VBSEM for each network and listed them in Table 2.
The results were obtained with a standard PC with 3.4 GHz
and 2 GB RAM.

5.1.2.  Comparison with the Gibbs sampling

We tested in this subsection the VBSEM algorithm on a sim-
ulated network in order to compare it with the Gibbs sam-
pling [26]. We simulated a network of 20 genes and gener-
ated their expressions based on the proposed DBNs and the
linear Gaussian regulatory model with Gaussian distributed
weights. We focused on a particular gene in the simulated
networks. The gene was assumed to have two parents. We
compared the performance of VBSEM and Gibbs sampling
in recovering the true networks. In Table 3, we present the
number of errors in 100 Monte Carlo tests. For the Gibbs
sampling, 500 Monte Carlo samples were used. We tested the
algorithms under different settings. In the table, N stands for
the number of time samples and G is the number of genes.
As it can be seen, the VBSEM outperforms Gibbs sampling
even in an underdetermined system. Since the VBSEM has
much lower complexity than Gibbs sampling, the proposed
VBSEM algorithm is better suited for uncovering large net-
works.
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5.2. Testonrealdata

We applied the proposed VBSEM algorithm on ¢cDNA mi-
croarray data sets of 62 genes in the yeast cell cycle re-
ported in [27, 28]. The data set 1 [27] contains 18 samples
evenly measured over a period of 119 minutes where a syn-
chronization treatment based on o mating factor was used.
On the other hand, the data set 2 [28] contains 17 sam-
ples evenly measured over 160 minutes and a temperature-
sensitive CDC15 mutant was used for synchronization. For
each gene, the data is represented as the log,{(expression
at time t)/(expression in mixture of control cells)}. Missing



EURASIP Journal on Bioinformatics and Systems Biology

7>| RAD53 ‘

—— Downregulation
—— Weights 0-0.4

\
scri [ r
\

- -~ Weights 0.4-0.8
~~~~~ Weights 0.8-1.5

FIGURE 5: Inferred network using the « data set of [27].

values exist in both data sets, which indicate that there was no
strong enough signal in the spot. In this case, simple spline
interpolation was used to fill in the missing data. Note the
time step that differs in each data set can be neglected since
we assume a time-homogeneous regulating process.

When validating the results, the main objective is to de-
termine the level of confidence of the connections in the in-
ferred network. The underlying intuition is that we should be
more confident on features that would still be inferred when
we perturb the data. Intuitively, this can be performed on
multiple independent data sets generated from repeated ex-
periments. However, in this case and many other practical
scenarios, only one or very limited data replicates are avail-
able and the sample size in each data set is small. The ques-
tion is then how to produce the perturbed data from the lim-
ited available data sets and at the same time maintain the un-
derlying statistical features of the data set. One way to achieve
it is to apply the bootstrap method [29]. Through bootstrap-
ping the data set, we can generate multiple pseudoindepen-
dent data sets, each of which still maintains the statistics of
the original data. The bootstrap methods have been used
extensively for static data sets. When applied to time-series
data, an additional requirement is to maintain as much as
possible the inherent time dependency between samples in
the bootstrapped data sets. This is important since the pro-
posed DBNs modeling and VBSEM algorithm exploit this
time dependency. Approaches have been studied in the boot-
strap literatures to handle time-dependent samples and we
adopt the popular moving block bootstrap method [30]. In
moving block bootstrap, we created pseudo-data sets from

the original data set by first randomly sampling blocks of
sub-data sets and then putting them together to generate a
new data set. The detailed steps can be summarized as fol-
lows.

(1) Select the length of the block L.
(2) Create the set of possible n = N — L + 1 blocks from
data. These blocks are created in the followingway:
Z;=Y(,i:i+L—1). (15)
(3) Randomly sample with replacement [N/L] blocks
from the set of blocks {Z;} Y11,
(4) Create the pseudo-data set by putting all the sampled

blocks together and trim the size to N by removing the
extra data samples.

A key issue in moving block bootstrap is to determine the
block length L. The idea is to choose a large enough block
length L so that observations more than L time units apart
will be nearly independent. Many theoretical and applicable
results have been developed on choosing the block length.
However, they rely on large size of data samples and are com-
putationally intensive. Here, we develop an easy and practical
approach to determine the block length. We compute the au-
tocorrelation function on data and choose the block length as
the delay, at which the ACF becomes the smallest. The ACF
in this case may not be reliable but it provides at least some
measures of independence.

In Figure 5, we show the inferred network when the data
set from [27] was considered and the moving block bootstrap
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FIGURE 6: Inferred network using the CDC28 data set of [28].

was used to resample the observations. The total number of
re-sample data sets was 500. In this plot, we only drew those
links with the estimated APP higher than 0.6. Weused the
solid lines to represent those links with weights between 0
and 0.4, the dotted lines for the links with weights between
0.4 and 0.8, and the lines with dashes and dots for those with
weights higher than 0.8. The red color was used to repre-
sent downregulation. A circle enclosing some genes means
that those corresponding proteins compose a complex. The
edges inside these circles are considered as correct edges since
genes inside the same circle will coexpress with some delay.
In Table 4, we show the connections with some of the high-
est APPs found from the a data set of [27]. We compared
them with the links in the KEGG pathway [31], and some of
the links inferred by the proposed algorithm are predicted in
it. We considered a connection as predicted when the parent
is in the upper stream of the child in the KEGG. Further-
more, the proposed algorithm is also capable of predicting
the nature of the relationship represented by the link through
the weight. For example, the connection between CDC5 and
CLBI has a weight equal to 0.6568, positive, so it represents
an upregulation as predicted in the KEGG pathway. Another
example is the connection from CLB1 to CDC20; its APP is
0.6069 and its weight is 0.4505, again positive, so it stands for
an up-regulation as predicted by the KEGG pathway.

In Figure 6, we depict the inferred network when the
CDC28 data set of [28] was used. A moving block boot-
strap was also used with the number of the bootstrap data
sets equal to 500 again. Still, the links presented in this plots
are those with the APP higher than 0.6. In Table 5, we show
some of the connections with some of the highest APPs. We
also compared them with the links in the KEGG pathway,
and some of the links inferred by the proposed algorithm are
also predicted in it. Furthermore, the proposed algorithm is

TaBLE 4: Links with higher APPs obtained from the « data set of
[27].

From To APPs Comparison with KEGG
CDC5 CLB1 0.6558 Predicted

CLB6 CDC45 0.6562 Predicted

CLB6 SMC3 0.7991 Not predicted

SWI4 SMC3 0.6738 Not predicted

CLB6 HSL1 0.6989 Not predicted

CLB6 CLN1 0.7044 Predicted the other way round
CLN1 CLN3 0.6989 Predicted the other way round
PHO05 SIC1 0.6735 Not predicted

CLB6 RADS3 0.6974 Not predicted

CDC5 CLB2 0.6566 Predicted

FUS3 GIN4 0.6495 Not predicted

PHO05 PHO5 0.6441 Not predicted

CLB2 CDC5 0.6390 Predicted the other way round
CLB6 SWI4 0.6336 Predicted the other way round

also capable of predicting the nature of the relationship rep-
resented by the link through the weight. For example, the
connection between TEM1 and DDCI1 has a weight equal
to —0.3034; the negative sign represents a downregulation
as predicted in the KEGG pathway. Another example is the
connection from CLB2 to CDC20, its APP is 0.6069 and its
weight is 0.7763, this time positive, so it stands for an up-
regulation as predicted by the KEGG pathway.

Model validation

To validate the proposed linear Gaussian model, we tested
the normality of the prediction errors. If the prediction errors
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FiGure 8: Histogram of prediction error in the CDC28 data set.

yield Gaussian distributions as in the linear model (1), it then
proves the feasibility of linear Gaussian assumption on data.

Given the estimated b; and w; of gene i, the prediction
error ¢; is obtained as

& = RW,b; — Yi (16)
where W; = diag(w;) and R = TYT, with
1 0
T= : (17)
10

We show in Figures 7 and 8 examples of the histograms of the
prediction errors for genes DDC1, MEC3, and GRF10 in the
o and CDC28 data sets.

Those histograms exhibit the bell shape for the distri-
bution of the prediction errors and such pattern is constant

over all the genes. To examine the normality, we per-
formed Kolmogorov-Smirnov goodness-of-fit hypothesis
test (KSTEST) of the prediction errors for each gene. All the
prediction errors pass the normality test at the significance
level of 0.05, and therefore it demonstrates the validity of the
proposed linear Gaussian assumption.

Results validation

To systematically present the results, we treated the KEGG
map as the ground truth and calculated the statistics of
the results. Even though there are still uncertainties, the
KEGG map represents up-to-date knowledge about the dy-
namics of gene interaction and it should be reasonable to
serve as a benchmark of results validation. In Tables 6 and
7, we enlisted the number of true positives (tp), true neg-
atives (tn), false positives (fp), and false negative (fn) for
the « and CDC28 data sets, respectively. We also varied the



Isabel Tienda Luna et al. 11
- Joocy
I
I
N
: MAD3
Y kol
(i)
o
\ 1
~
[HSL7 }------- SRADS3K - [MIHI |- - [caK1]
|cbcask—(cpcs |
—— Downregulation - -~ Weights 0.4-0.8
—— Weights0-04 = Weights 0.8-1.5
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TasLE 5: Links with higher APPs obtained from the CDC28 data set TaBLE 6: The « data set.
of [28].

(28] APPs threshold tp tn fp fn
From To APPs Comparison with KEGG 0.4 411 177 3247 9
CLB1  CDC20 0.7876 Predicted the other way round 0.5 58 3116 308 362
BUB1 ESP1 0.6678 Predicted 0.6 8 3405 19 412
BUB2 CDC5 0.7145 Predicted
SIC1 GIN4 0.6700 Not predicted
SMC3  HSLI 0.6689 Not predicted Tasre 7: The CDC28 data set.

CLN1 CLN3 0.7723 Predicted the other way round APPs threshold tp tn fp fn
FARI SIC1 0.6763 Predicted 0.4 405 163 3261 15
CLN1  SICl 0.6640 Predicted 0.5 74 3019 405 346
CDC5  PCLI 0.7094 Not predicted 0.6 14 3363 61 406
DBF2 FAR1 0.7003 Not predicted

SICl CIN1 0.8174  Predicted the other wayround  dated, this can very well indicate that the two data sets were
PBS1  MBP1 0.7219 Not predicted not quite informative about the causal relationship between
FAR1  MET30 0.873 Not predicted genes.

CLB2 DBF2 0.7172 Predicted the other way round

APP threshold for decision. (The thresholds are listed in the
threshold column of the tables.) A general observation is that
we do not have high confidence about the inference results
since high tp cannot be achieved at low fp. Since the VB-
SEM algorithm has been tested with acceptable performance
on simulated networks and the model has also been vali-

Data integration

In order to improvethe accuracy of the inference, we applied
the Bayesian integration scheme described in Section 4 to
combine the two data sets, trying to use information pro-
vided from both data sets to improve the inference confi-
dence. The Bayesian integration includes two stages. In the
first stage, the proposed VBSEM algorithm is run on the data
set 1 that contains larger number of samples. In the second
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TasLE 8: Links with higher APPs obtained based on the integrated
data set.

From To APPs Comparison with KEGG
CLB1 CDC20 0.7969 Predicted the other way round
CLB2 CDC5 0.6898 Predicted the other way round
CDC6 CLB6 0.7486 Predicted the other way round
HSL7 CLB1 0.6878 Predicted
CDC5 CLB1 0.7454 Predicted
CLB2 CLB1 0.6795 Predicted
CLB6 HSL1 0.7564 Not predicted
RAD17 CLN3 0.7324 Not predicted
FAR1 SIC1 0.7329 Predicted
FAR1 MET30 0.7742 Not predicted
MET30  RAD9 0.7534 Not predicted
CDC5 CLB2 0.7033 Predicted
CLB6 CDC45 0.6299 Predicted
CLB6 Cinl 0.6912 Predicted the other way round
CLN1 CLN3 0.8680 Predicted the other way round
BUBI1 ESP1 0.6394 Predicted
BUB2 CDC5 0.6142 Predicted
SIC1 CLN1 0.6793 Predicted the other way round

stage, the APPs of the latent variables b; obtained in the first
stage are used as the priors in the VBSEM algorithm run on
the second data set from [28]. In Figure 9, we plot the in-
ferred network obtained from the integration process. We
also performed bootstrap resampling in the integration pro-
cess: we first obtained a sampled data set from the data set 1
and then we use its calculated APPs as the prior to integrate
a bootstrap sampled data from set 2.

In Table 8, we present the links with the higher APPs in-
ferred performing integration of the data sets. We made a
comparison between these links and the ones shown in the
KEGG pathway map again. As it can be seen, the proposed
algorithm is able to predict many relationships. For instance,
the link between CDC5 and CLBI is predicted correctly by
our algorithm with a posteriori probability of 0.7454. The
weight associated to this connection is —0.1245, which is
negative, and so there is a downregulation relationship con-
firmed in the KEGG pathway. We also observed improve-
ments from integrating the two data sets. Regarding the link
between CDC5 and CLBI, if we compare the result obtained
from the integrated data set, with that shown in Table 4, we
see that this relationship was not predicted when using the
CDC28 data set 2. Even though this link was predicted by the
o data set its APP is however lower and the weight is positive
indicating an inconsistency with the KEGG map. The incon-
sistency has been fixed by data integration. As another exam-
ple, the relationship between HSL7 and CLB1 was predicted
based on the integrated data sets but it was not predicted
from the CDC28 data set. This link was predicted when only
the « data set was used but its APP is 0.6108, lower than the
APP obtained performing integration. Similar phenomenon
can be observed for the link between FARI to SIC1 again.

TaBLE 9: Integrated data set.

APPs threshold tp tn fp fn
0.4 252 1655 1769 168
0.5 50 3175 249 370
0.6 17 3374 50 403

We also listed the statistics of the results when compared
with the KEGG map in Table 9. We can see that when com-
pared with Tables 6 and 7, data integration almost halved the
fp at the thresholds 0.4 and 0.5 and also reduced the fp at
0.6. Meanwhile, tp increased. This implies the increased con-
fidence on the results after data integration, which demon-
strates the advantages of the Bayesian data integration.

Another way of looking at the benefits of the integration
process is by examining the lower bound of the VBSEM. If
the data integration process benefits the performance of the
algorithm, we must see higher lower bound values than those
of single data set. This happens because if the data contains
more information after integration, the lower bound should
be closer to the value it is approximating. In Figure 10, we
plot the evolution of lower bound over the VBSEM iterations
for each gene from the « data set, the CDC28 data set, and the
integrated data sets. The increase of the lower bound, when
the integrated data sets were used, supports the advantages
of Bayesian data integration.

6. CONCLUSION

We investigated the DBNs modeling of cell cycle GRNs and
the VBSEM learning of network topology. The proposed VB-
SEM solution is able to estimate the APPs of topology. We
showed how the estimated APPs can be used in a Bayesian
data integration strategy. The low complexity of the VB-
SEM algorithm shows its potential to work with large net-
works. We also showed how the bootstrap method can be
used to obtain the confidence of the inferred networks. This
approach has been approved very useful in the case of small
data size, a common case in computational biology research.

APPENDICES

A. CONJUGATE PRIORS OF TOPOLOGY
AND PARAMETERS

We choose the conjugate priors for topology and the param-
eters and they are

p(bi) = N(b; | uy, Co),
p(6:) = p(wi,a?) = p(wi | 67)p(a7)

= ‘/v(wl | [’lWI.)O'izIG)lgﬁ(%y %)7

(A.1)

(A.2)

where g, and Cy are the mean and the covariance of the prior
probability density p(b;). In general, p,, and p, are simply
set as zero vectors, and meanwhile vy and y, are set equal
to small positive real values. Moreover, covariance matrix Cy



Isabel Tienda Luna et al. 13
CDC28 data set o data set Integrated data set
-20 ———— -20 — -20
-30 -30 — -30
—40 —40
T 50 T W )
g 60 g g 60
=) -0 —60 =)
5 —70 5 5 70
£ -850 e Z 80
= 90 = 80y ~ 90
-100 =90 p -100
~110 : : : : ~100 : : : : ~110 : : : :
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Number of iterations

(a)

Number of iterations

Number of iterations

(b) (c)

FiGUrE 10: Evolution of the VBSEM lower bound.

needs to be checked carefully and is usually set as a diago-
nal matrix with a relatively large constant at each diagonal
element.

These priors satisty the conditions for conjugate expo-
nential (CE) models [25]. For conjugate exponential models,
formulae exist in [25] for solving analytically the integrals in
the VBE and VBM steps.

B. DERIVATION OF VBE AND VBM STEPS

Let us first start with VBE step. Suppose that g(0;) obtained
in the previous VBM step follows a Gaussian-inverse-gamma
distribution and has the expression (B.5). The VBE step cal-
culates the approximation on the APPs of topology p(b;). By
applying the theorems of the CE model [25], g(b;) can be
shown to have the following expression:

q(b;) = N (b; | mp,, Zp,), (B.1)
where
my, = %, (G +£) = (Cy'+D),  (B2)
with
D=Be [(mwimw,)Tsz)q(a,v) +A7'],
f" = yi"Rdiag (my,)(0;%) ;4>
B=R"R, (B.3)
A=I;+K,
K =B & (S, + mpmy,),
and R = TY", with
1 0
T= : (B.4)
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being an N X (N + 1) matrix.
We now turn to the VBM step in which we compute
q(0;). Again, from the CE model and g(b;) obtained in (B.1),

we have
B ) (B.5)

(44
q(0:) = N (w; | mwnzwi)19<§»§

where
-1 T T
my, = (I¢ +K) (Yi RM;,) ',
S = 02 (Ig+K) ',
, (I¢ +K) (B6)
a=Nn+1)-G-2,
B-—c
with
M, = diag (my,),
(B.7)

¢ =yi' RM,my, —y;"yi — 7,

and # is a hyperparameter of the parameter prior p(0;) based
on CE models (A.2).

1. Computation of the lower bound ¥

The convergence of the VBEM algorithm is tested using a
lower bound of In p(y;). In this paper, we use ¥ to denote
this lower bound and we calculate it using the newest g(b;)
and q(60;) obtained in the iterative process. ¥ can be written
more succinctly using the definition of the KL divergence. Let
us first review the definition of the KL divergence and then
derive an analytical expression for ¥ .

The KL divergence measures the difference between two
probability distributions and it is also termed relative en-
tropy. Thus, using this definition we can write the difference
between the real and the approximate distributions in the fol-
lowing way:

— [ dbsg(by) 1n 2B0Yi 1 8)
KL[q(b;)|[p(bi,yi | ;)] = _Jdb’q(b’)ln q(b;)

p(6;)
q(0:)

miﬂ&ﬂbw0]=—Jdmm
(C.1)
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And finally, the lower bound ¥ can be written in terms
of the previous definitions as

- s a0 a0
_ j d0;9(6:) KL[q(by)||p(biyi | 6)]
~KL[g(0)p(0)]. )
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