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A method for gene clustering from expression profiles using shape information is presented. The conventional clustering
approaches such as K-means assume that genes with similar functions have similar expression levels and hence allocate genes
with similar expression levels into the same cluster. However, genes with similar function often exhibit similarity in signal shape
even though the expression magnitude can be far apart. Therefore, this investigation studies clustering according to signal shape
similarity. This shape information is captured in the form of normalized and time-scaled forward first differences, which then are
subject to a variational Bayes clustering plus a non-Bayesian (Silhouette) cluster statistic. The statistic shows an improved ability
to identify the correct number of clusters and assign the components of cluster. Based on initial results for both generated test data
and Escherichia coli microarray expression data and initial validation of the Escherichia coli results, it is shown that the method has
promise in being able to better cluster time-series microarray data according to shape similarity.
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1. Introduction

Investigating the genetic structure and metabolic functions
of organisms is an important yet demanding task. Genetic
actions, interactions, how they control and are controlled,
are determined, and/or inferred by data from many sources.
One of these sources is time-series microarray data, which
measure the dynamic expression of genes across an entire
organism. Many methods of analyzing this data have been
presented and used. One popular method, especially for
time-series data, is gene-based profile clustering [1]. This
method groups genes with similar expression profiles in
order to find genes with similar functions or to relate genes
with dissimilar functions across different pathways occurring
simultaneously.

There has been much work on clustering time-series
data and clustering can be done based on either similar-
ity of expression magnitude or the shape of expression
dynamics. Clustering methods include hierarchical and
partitional types (such as K-means, fuzzy K-means, and
mixture modeling) [2]. Each method has its strengths and
weaknesses. Hierarchical techniques do not produce clusters
per se; rather, they produce trees or dendrograms. Clusters

can be built from these structures by later cutting the output
structure at various levels. Hierarchical techniques can be
computationally expensive, require relatively smooth data,
and/or be unable to “recover” from a poor guess; that is, the
method is unable to reverse itself and recalculate from a prior
clustering set. They also often require manual intervention in
order to properly delineate the clusters. Finally, the clusters
themselves must be well defined. Noisy data resulting in ill-
defined boundaries between clusters usually results in a poor
cluster set.

Partitional clustering techniques strive to group data
vectors (in this case, gene expression profiles) into clusters
such that the data in a particular cluster are more similar
to each other than to data in other clusters. Partitional
clustering can be done on the data itself or on spline
representations of the data [3, 4]. In either case, square-
error techniques such as K-means are often used. K-means
is computationally efficient and can always find the global
minimum variance. However, it must know the number of
clusters in advance; there is no provision for determining an
unknown number of clusters other than repeatedly testing
the algorithm with different cluster numbers, which for large
datasets can be very time consuming. Further, as is the case
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with hierarchical methods, K-means is best suited for clusters
which are compact and well separated; it performs poorly
with overlapping clusters. Finally, it is sensitive to noise and
has no provision for accounting for such noise through a
probabilistic model or the like. A related technique, fuzzy
K-means, attempts to mimic the idea of posterior cluster
membership probability through a concept of “degree of
membership.” However, this method is not computationally
efficient and requires at least an a priori estimate of the
degree of membership for each data point. Also, the number
of clusters must be supplied a priori, or a separate algorithm
must be used in order to determine the optimum number of
clusters. Another similar method is agglomerative clustering
[5]. Model-based techniques go beyond fuzzy K-means and
actually attempt to model the underlying distributions of the
data. The methods maximize the likelihood of the data given
the proposed model [4, 6].

More recently, much study has been given toward
clustering based on expression profile shape (or trajectory)
rather than absolute levels. Kim et al. [7] show that genes
with similar function often exhibit similarity in signal shape
even though the expression magnitude can be far apart.
Therefore, expression shape is a more important indication
of similar gene functions than expression magnitude.

The same clustering methods mentioned above can be
used based on shape similarity. An excellent example of a
tree-based algorithm using shape-similarity as a criterion
can be found in [8]. While the results of this investigation
proved fruitful, it should be noted that the data used in the
study resulted in well-defined clusters. Further, the clustering
was done manually once the dendrogram was created.
Möller-Levet et al. [9] used fuzzy K-means to cluster time-
series microarray data using shape similarity as a criterion.
However, the number of clusters was known beforehand; no
separate optimization method was used in order to find the
proper number of clusters. Balasubramaniyan et al. [10] used
a similarity measure over time-shifted profiles to find local
(short-time scale) similarities. Phang et al. [11] used a simple
(+/0/−) shape decomposition and used a nonparametric
Kruskal-Wallis test to group the trajectories. Finally, Tjaden
[12] used a K-means related method with error information
included intrinsically in the algorithm.

A common difficulty with these approaches is to deter-
mine the optimal number of clusters. There have been
numerous studies and surveys over the years aimed at
finding optimal methods for unsupervised clustering of data;
for example, [13–20]. Different methods achieve different
results, and no single method appears to be optimal in a
global sense. The problem is essentially a model selection
problem. It is well known that the Bayesian methods
provide the optimal framework for selecting models, though
a complete treatment is analytically intractable for most
cases. In this paper, a Bayesian approach based on the
Variational Bayes Expectation Maximization (VBEM) algo-
rithm is proposed to determine the number of clusters and
better performance than MDL and BIC criterion has been
demonstrated.

In this study, the goal was to find clusters of genes
with similar functions; that is, coregulated genes using

time-series microarray data. As a result, we choose to
cluster genes based on signal shape information. Particularly,
signal shape information is derived from the normalized
time-scaled forward first differences of the time-sequence
data. This information is then forwarded to a Variational
Bayes Expectation Maximization algorithm (VBEM, [21]),
which performs the clustering. Unlike K-means, VBEM is
a probabilistic method, which was derived based on the
Bayesian statistical framework and has shown to provide
better performance. Further, when paired with an external
clustering statistic such as the Silhouette statistic [22], the
VBEM algorithm can also determine the optimal number of
clusters.

The rest of the paper is organized as follows. In Section 2
the problem is discussed in more detail, the underlying
model is developed, and the algorithm is presented. In
Section 3 the results of our evaluation of the algorithm
against both simulated and real time-series data are shown.
Also presented are comparisons between the algorithm and
K-means clustering, both methods using several different
criteria for making clustering decisions. Conclusions are
summarized in Section 4. Finally, Appendices A, B, and C
present a more detailed derivation of the algorithm.

2. Method

2.1. Problem Statement and Method. Given the microarray
datasets of G genes, xg ∈ RN×1 for (g = 1, 2, 3, . . . ,G),
where N is the number of time points, that is, the columns
in the microarray, it is desired to cluster the gene expressions
based on signal shape. The clustering is not known a priori;
therefore not only must individual genes be assigned to
relevant clusters, but the number of clusters themselves must
also be determined.

The clustering is based on expression-level shape rather
than magnitude. The shape information is captured by the
first-order time difference. However, since the gene expres-
sion profiles were obscured by the varying levels manifested
in the data, the time difference must be obtained on the
expression levels with the same scale and dynamic range.
Motivated by the observations, the proposed algorithm
has three steps. In the first step, the expression data is
rescaled. In the second step, the signal shape information
is captured by calculating the first-order time difference. In
the last step, clustering is performed on the time-difference
data using a Variational Bayes Expectation Maximization
(VBEM) algorithm. In the following, each step is discussed
in detail.

2.2. Initial Data Transformation. Each gene sequence was
rescaled by subtracting the mean value of each sequence from
each individual gene, resulting in sequences with zero mean.
This operation was intended to mitigate the widely different
magnitudes and slopes in the profile data. By resetting all
genes to a zero-mean sequence, the overall shape of each
sequence could be better identified without the complication
of comparing genes with different magnitudes.
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Figure 1: Dissimilar expression levels with similar shape.

After this, the resulting sequences were then normalized
such that the maximum absolute value of the sequence was
1. Gene expression between related genes can result in a large
change or a small; if two genes are related, that relationship
should be recoverable regardless of the amplitude of change.
By renormalizing the data in this manner, the amplitudes of
both large-change and small-change genes were placed into
the same order of magnitude.

Mathematically, the above operation can be expressed by

zg =
xg − μxg

max
(
abs
(
xg − μxg

)) , (1)

where μxg represents the mean of xg .

2.3. Extraction of Shape Information and Time Scaling. To
extract shape information of time-varying gene expression,
the derivative of the expression trajectory is considered. Since
we are dealing with discrete sequences, differences must be
used rather than analytical derivatives. To characterize the
shape of each sequence, a simple first-difference scheme was
used, this being the magnitude difference of the succeeding
point and the point under consideration, divided by the
time difference between those points. The data was taken
nonuniformly over a period of approximately 100 minutes,
with sample times varying from 7 to 50 minutes. As the
transformation in (1) already scales the data to a range of
[−1, 1], further compressing that scale by nearly 2 orders
of magnitude over some time stretches was deemed neither
prudent nor necessary. Therefore, the time difference was
scaled in hours to prevent this unneeded range compression.
The resulting sequences were used as data for clustering.

Mathematically, this operation can be written as

yg,k =
zg,k+1 − zg,k

tg,k+1 − tg,k
, k = 1 · · ·N − 1, (2)

where tg is the length-N vector of time points associated with
gene g, zg is the vector of transformed time-series data (from
(1)) associated with gene g, and yg is the resulting vector of
first differences associated with gene g.

Figure 1 shows an example pair of sequences using
contrived data. These two sequences are visually related in
shape, but their mean values are greatly different. A K-means
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Figure 2: Normalized differences: the same two sequences after
transformations.

clustering would place these two sequences in different
clusters. By transforming the data, the similarity of the two
sequences is enhanced, and the clustering algorithm can then
place them in the same cluster. Figure 2 shows the original
two sequences after data transformation.

2.4. Clustering. Once the sequence of first differences was
calculated for each gene, clustering was performed on y, the
first-order difference. To this end, a VBEM algorithm was
developed. Before presenting that development, a general
discussion of VBEM is in order.

An important problem in Bayesian inference is determin-
ing the best model for a set of data from many competing
models. The problem itself can be stated fairly compactly.
Given a set of data y, the marginal likelihood of that data
given a particular model m can be expressed as

p(y | m) =
∫

p(y, x, θ | m)dx dθ, (3)

where x and θ are, respectively, the latent variables and
the model parameters. The integration is taken over both
variables and parameters in order to prevent overfitting, as
a model with many parameters would naturally be able to fit
a wider variety of datasets than a model with few parameters.

Unfortunately, this integral is not easily solved. The
VBEM method approximates this by introducing a free
distribution, q(x, θ), and taking the logarithm of the above
integral. If q(x, θ) has support everywhere that p(x, θ | y,m)
does, we can construct a lower bound to the integral using
Jensen’s inequality:

ln p(y | m) = ln
∫

p(y, x, θ | m)dx dθ

= ln
∫

q(x, θ)
p(y, x, θ | m)

q(x, θ)
dx dθ

≥
∫

q(x, θ) ln
p(y, x, θ | m)

q(x, θ)
dx dθ.

(4)

Maximizing this lower bound with respect to the free
distribution q(x, θ) results in q(x, θ) = p(x, θ | y,m),
the joint posterior. Since the normalizing constant is not
known, this posterior cannot be calculated exactly. Therefore
another simplification is made. The free distribution q(x, θ)



4 EURASIP Journal on Bioinformatics and Systems Biology

is assumed to be factorable, that is, q(x, θ) = q(x)q(θ). The
inequality then becomes

ln p(y | m) ≥
∫

q(x)q(θ) ln
p(y, x, θ | m)
q(x)q(θ)

dx dθ

= F (q(x), q(θ)).

(5)

Maximizing this functional F is equivalent to minimiz-
ing the KL distance between q(x)q(θ) and p(x, θ | y,m). The
distributions q(x) and q(θ) are coupled and must be iterated
until they converge.

With the above discussion in mind, we now develop
the model that our VBEM algorithm is based on. Given
K clusters in total, we can let Cg ∈ {1, 2, . . . , k} denote
the cluster number of gene g. Then, we assume that, given
Cg = k, the expression level for gene g follows a Gaussian
distribution, that is,

p
(
yg | Cg = k,m1:k, s2

1:k

) = N
(
mk, diag

(
sk2)), (6)

where mk = [mk1 ,mk2 , . . . ,mkN ]T is the mean and sk2 =
[sk1

2, sk2
2, . . . , skN

2]T is the variance of the kth Gaussian
cluster. Since both mk and sk2 are unknown parameters, a
Normal-Inverse-Gamma prior distribution is assigned as

p
(
mk , sk2) =

N∏

j=1

N

(

0,
si, j2

k

)

IG

(

si, j
2 | a0

2
,
b0

2

)

, (7)

where k, a0, and b0 are the known parameters of the prior
distribution. Furthermore, a multinomial prior is assigned
for the cluster number Cg as

p
(
Cg = k | L) = Lk, (8)

where Lk is the prior probability that gene g belongs to kth
cluster k and

∑K
k=1 Lk = 1. Lk further assumes a priori the

Dirichlet distribution

p
(
L1,L2, . . . ,Lk

) = Dir
(
a1, . . . , ak

)
, (9)

where a1 · · · ak are the known parameters of the distri-
bution. Given the transformed expressions of G genes,
y = [y1, y2, . . . , yG]T , the stated two tasks are equivalent to
estimating K , the total number of clusters, and Cg for all G
genes.

A Bayesian framework is adopted for estimating both K
and Cg , which are calculated by the maximum a posteriori
criterion as

Kmax = arg max
K

p(y | H = K),

Cg,max = arg max
k

p
(
Cg = k | y), k ∈ 1, . . . ,Kmax,

(10)

where p(y | H = k) is the marginal likelihood given the
model H has K clusters, and p(Cg = k | y) is the a posteriori
probability of Cg when the total number of clusters is K .

Unfortunately, there are now multiple unknown nui-
sance parameters at this point: mk, sk2, a, b, k, and L all
still need to be found. To do so requires a marginalization
procedure over all the unknowns, which is intractable for
unknown cluster id Cg . Therefore, a VBEM scheme is
adopted for estimating the necessary distributions.

2.5. VBEM Algorithm. Given the development above, p(y |
H = K) can be expressed as

p(y | H = k) =
∑

Cg

∫

p
(
y | Cg = k, θ

)
p
(
Cg
)
p(θ)dθ,

(11)

where θ is the vector of unknown parameters mk, sk2, a,
b, k, and L. Notice the summation in (11) is NP hard,
whose complexity increases exponentially with the number
of genes. We therefore resort to approximate this integration
by variational EM. First, a lower bound is constructed for
the expression in (11). The ultimate aim is to maximize this
lower bound. The expression for the lower bound can be
written

ln p(y | H = k)

= ln
∑

Cg

∫

p
(
y | Cg , θ

)
p
(
Cg
)
p(θ)dθ

≥ ln
∫[∑

Cg

q
(
Cg
)

ln
p
(
y,Cg | θ

)

q
(
Cg
) + ln

p(θ)
q(θ)

]

dθ,

(12)

where as above the inequality derives by use of Jensen’s
inequality. The free distributions q(Cg) and q(θ) are intro-
duced as approximations to the unknown distributions
p(Cg | y) and p(θ | y). The q(·) distributions are
chosen so as to maximize the lower bound. Using variational
derivatives and an iterative coordinate ascent procedure, we
find

VBE Step:

q j+1(Cg
) = 1

ZCg

exp
[∫

q( j)(θ) ln p
(
Cg , y | θ)

]
dθ; (13)

VBM Step:

q j+1(θ) = 1
Zθ

exp

[
∑

Cg

q( j+1)(Cg
)

ln p
(
Cg , y | θ)

]

, (14)

where j and j + 1 are iterations and Z(·) are normalizing
constants to be determined. Because of the integration in
(13), q(θ) must be chosen carefully in order to have an
analytic expression. By choosing q(θ) as a member of the
exponential family, this condition is satisfied. Note q(θ) is
an approximation to the posterior distribution q(θ | y) and
therefore can be used to obtain the estimate of θ.
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2.6. Summary of VBEM Algorithm. The VBEM algorithm is
summarized as follows:

(1) Initialization

(i) Initialize mk, sk2, a, b, k, and L.

Iterate until lower bound converges enumerate

(2) VBE Step:

(i) for k = 1 : K , g = 1 : G,

(ii) calculate q(Cg = k) using (A.1) in Appendix A,

(iii) end g, k.

(3) VBM Step:

(i) for k = 1 : K ,

(ii) calculate q(θ) using (B.1) in Appendix B,

(iii) End k.

(4) Lower bound:

(i) calculate F (q (Cg), q (θ)) using (C.1) in
Appendix C.

End iteration.

2.7. Choice of the OptimumNumber of Clusters. The Bayesian
formulation of (11) suggests using the number of clusters
that maximize the marginal likelihood, or in the context
of VBEM, the lower bound F(·). Instead of solely basing
the determination of the number of clusters using F(·),
4 different criteria are investigated in this work: (a) lower
bound F(·) used within the VBEM algorithm (labelled KL),
(b) the Bayes Information Criterion [23], (c) the Silhouette
statistic performed on clusters built from transformed data,
and (d) the Silhouette statistic performed on clusters built
from raw data. The VBEM lower bound F(·) is discussed
above; the BIC and Silhouette criteria are discussed below.

2.8. Bayes Information Criterion (BIC). The Bayes Informa-
tion Criterion (BIC, [23]) is an asymptotic approximation to
the Bayes Factor, which itself is an average likelihood ratio
similar to the maximum likelihood ratio. As the Bayes Factor
is often a difficult calculation, the BIC offers a less-intensive
approximation. Subject to the assumptions of large data size
and exponential-family prior distributions, maximizing the
BIC is equivalent to maximizing the integrated likelihood
function. The BIC can be written as

BIC = 2 ln p(x | θ)− k ln(n), (15)

where p(x | θ) is the likelihood function of data x given
parameters θ, k is the size (dimensionality) of parameter set
θ, and n is the sample size. The term −k ln(n) is a penalty
term discouraging more complex models.

2.9. Silhouette Statistic. The Silhouette statistic (Sil, [22])
uses the squared difference between a data vector and all
other data vectors in all clusters. For any particular data
vector v belonging to cluster A, let av be the average squared
difference between data vector v and all other vectors in

cluster A. Let bv be the minimum average squared distance
between data vector v and all other vectors of cluster B,
B /=A. Then the Silhouette statistic for data vector v is

Sil(v) = bv − av
max

{
av, bv

} . (16)

It is quickly seen that the range of this statistic is [−1, 1].
A value close to 1 means the data vector is very probably
assigned to the correct cluster, while a value close to −1
means the data vector is very probably assigned to the wrong
cluster. A value near 0 is a neutral evaluation.

3. Results

We illustrate the method using simulated expression data and
with microarray data available online.

3.1. Simulation Study. In order to test the ability of VBEM
to properly cluster data of similar shape but dissimilar
mean level, and scale, several datasets were constructed.
These datasets were intended to appear as would a set
of time-series microarray data. Each consisted of 5 data
points in a vector, corresponding to what might be seen
from a microarray from a single gene over 5-time samples.
Identical assumptions were used to produce these datasets;
namely, that the inherent clusters within the data were based
upon a mean vector of values for a particular cluster, that
each cluster may have subclusters exhibiting a mean shift
and/or a scale change from the mean vector, and that the
data within a cluster randomly varied about that mean
vector (plus any mean shift and scale change). All sets of
sample data shared the characteristics shown in Table 1.
For example, a test “gene” of cluster “dms” would be a
random length-5 vector, drawn from a Gaussian distribution
with a mean of

[
2.0 −2.0 0.0 0.0 0.0

]
and a particular

standard deviation (defined below). This random vector
would then be scaled by 0.25 and shifted in value by
−1.25.

The datasets constructed from these basis vectors differed
in number of data vectors per subcluster (and thus the total
number of data vectors), and the standard deviation used to
vary the individual vector values about their corresponding
basis vectors. Generally speaking, the standard deviation
vectors were constructed to be approximately 25% of the
mean vector for the “low-noise” sets, and approximately 50%
of the mean vector for the “high-noise” sets.

3.2. “Low-Noise” Test Datasets. Two datasets were con-
structed using standard deviation vectors approximately 25%
of the relevant mean vector. Table 2 shows the standard
deviation vectors used. Each subcluster in Table 1 was
replicated several times, randomly varying about the mean
vector in a Gaussian distribution with a standard deviation
as shown in Table 2. Test set 1 had 5 replicates per subcluster
(e.g., a1–a5, cs1–cs5), resulting in a total set N = 55 data
vectors. Test set 2 had 99 replicates per subcluster, resulting
in a total set N = 1089 data vectors.
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Table 1: Basis vectors for clusters in sample datasets.

Cluster Subcluster Mean vector Mean shift Scale factor

a a
[
0.5 0.5 0.5 0.5 2.0

]
0 1

b
b [

0.5 2.0 2.0 −2.0 −2.0
] 0 1

bm −1.25 1

c
c [

0.0 2.0 0.0 2.0 0.0
] 0 1

cs 0 0.25

d
d [

2.0 −2.0 0.0 0.0 0.0
] 0 1

dms −1.25 0.25

e

e
[
−2.0 0.0 0.0 0.0 −2.0

]

0 1

em −1.25 1

es 0 0.25

ems −1.25 0.25

Table 2: Standard deviation vectors for clusters in “low-noise”
sample datasets.

Cluster Standard deviation vector

a
[
0.1 0.1 0.1 0.1 0.5

]

b
[
0.1 0.5 0.5 0.5 0.5

]

c
[
0.1 0.5 0.1 0.5 0.1

]

d
[
0.5 0.5 0.1 0.1 0.1

]

e
[
0.5 0.1 0.1 0.1 0.5

]

Table 3: Standard deviation vectors for clusters in “high-noise”
sample datasets.

Cluster Standard deviation vector

a
[
0.2 0.2 0.2 0.2 1.0

]

b
[
0.2 1.0 1.0 1.0 1.0

]

c
[
0.2 1.0 0.2 1.0 0.2

]

d
[
1.0 1.0 0.2 0.2 0.2

]

e
[
1.0 0.2 0.2 0.2 1.0

]

3.3. “High-Noise” Test Datasets. Because of the need to test
the robustness of the clustering and prediction algorithms in
the presence of higher amounts of noise, six datasets were
constructed using standard deviation vectors approximately
50% of the relevant mean vector. Table 3 shows the standard
deviation vectors used. As with the “low-noise” sets, each
subcluster in Table 1 was replicated several times, randomly
varying about the mean vector in a Gaussian distribution,
this time with a standard deviation as shown in Table 3.
Table 4 shows the number of replicates produced for each
dataset. For the test data, an added transformation step
was accomplished that would normally not be performed
on actual data. Since the test data was produced in already
clustered form, the vectors (rows) were randomly shuffled to
break up this clustering.

3.4. Test Types and Evaluation Measures. To evaluate the
ability of VBEM to properly cluster the datasets, two test
sequences were conducted. First, the data was clustered using
VBEM in a “controlled” fashion; that is, the number of

Table 4: Subcluster replicates and total vector sizes for “high-noise”
datasets.

Test set Total replicates Total N

3 5 55

4 9 99

5 30 330

6 50 550

7 70 770

8 99 1089

clusters was assumed to be known and passed to the algo-
rithm. Second, the algorithm was tested in an “uncontrolled”
fashion; that is, the number of clusters was unknown, and
the algorithm had to predict the number of clusters given
the data. During the uncontrolled tests, a K-means algorithm
was also run against the data as a comparison.

The VBEM algorithm as currently implemented requires
an initial (random) probability matrix for the distribution
of genes to clusters, given a value for K . Therefore, for each
dataset, 55 trials were conducted, each trial having a different
initial matrix.

Also, each trial begins with an initial clustering of genes.
As currently implemented, this initialization is performed
using a K-means algorithm. The algorithm attempts to
cluster the data such that the sum of squared differences
between data within a cluster is minimized. Depending
on the initial starting position, this clustering may change.
In MATLAB, the built-in K-means algorithm has several
options available to include how many different trials
(from different starting points) are conducted to produce a
“minimum” sum-squared distance, how many iterations are
allowed per trial to reach a stable clustering, and how clusters
that become “empty” during the clustering process are
handled. For these tests, the K-means algorithm conducted
100 trials of its own per initial probability matrix (and output
the clustering with the smallest sum-squared distance), had a
limit of 100 iterations, and created a “singleton” cluster when
a cluster became empty.

As mentioned above, the choice of optimum K was
conducted using four different calculations. The first used
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Figure 3: Misclassification rate versus N, high-noise data, K fixed.

the estimate for the VBEM lower bound, the second used
the BIC equation. In both cases, the optimum K for a
particular trial was that which showed a decrease in value
when K was increased. This does not mean the values used
to determine the optimum K were the absolute maxima
for the parameter within that trial; in fact, they usually
were not. The overall optimum K for a particular choice
of parameter was the maximum value over the number
of trials. The third and fourth criteria made use of the
Silhouette statistic, one using the clusters of transformed
data and one using the corresponding clusters of raw data.
We used the built-in Silhouette function contained within
MATLAB for our calculations. To find the optimum K , the
mean Silhouette value for all data vectors in a clustering
was calculated for each value of K . The value of K for
which the mean value was maximized was chosen as the
optimum K .

To evaluate the actual clustering, a misclassification rate
was calculated for each trial cluster. Since the “ground-truth”
clustering was known a priori, this rate can be calculated as
a sum of probabilities derived from the original data and the
clustering results:

Rmi =
K∑

j=1

K∑

k=1

p
(
Cj | Ck

)
p
(
Ck
)
, (17)

where p(Cj | Ck) is the probability that computed cluster
Cj belongs to a priori cluster Ck given that Ck is in fact
the correct cluster, and p(Ck) is the probability of a priori
cluster Ck occurring. Rmi refers to the misclassification rate
using statistic m (KL, BIC, both Silhouette) for trial i. This
rate is in the range [0, 1] and is equal to 1 only when the
number of clusters is properly predicted and those calculated
clusters match the a priori clusters. Thus, both under- and
overprediction of clusters were penalized.

For the “controlled” test sequences, the combinations
of VBEM + KL (V/KL), VBEM + BIC (V/BIC), VBEM
+ Silhouette (transformed data) (V/SilT), and VBEM +
Silhouette (raw data) (V/SilR) all properly chose the opti-
mum clustering for the two “low-noise” datasets, in all
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Figure 4: K(pred) versus N, high-noise data.

cases with no misclassification. For the six “high-noise” sets,
V/KL and V/BIC were completely unable to choose the
optimum clustering (lowest misclassification rate). In the
case of V/SilT, the algorithm-chosen optimum was rarely the
true optimum (2 out of 6 datasets). However, the chosen
optimum was always very nearly optimal. Finally, V/SilR
chose the optimum clustering 5 out of 6 datasets. The
algorithm-chosen optimal clustering for both V/SilT and
V/SilR showed a misclassification rate of 6 percent or less,
while the misclassification rates for V/KL and V/BIC were
often in the range of 15–35 percent. Figure 3 summarizes this
data.

For the “uncontrolled” tests, the above 4 algorithms
were tested with the number of clusters unknown. Further,
K-means clustering with Silhouette statistic (KM/SilT and
KM/SilR) was also conducted for comparison. The results for
the 6 “high-noise” datasets are summarized below.

Figure 4 shows a summary plot of the predicted number
of clusters K versus dataset size N for all combinations.
Note that V/SilR correctly identified K = 5 for all datasets.
Also note that KM/SilT, KM/SilR, and V/SilT predicted K =
5 or K = 6 for all datasets except for test set 3 (N =
55). However, even though V/SilR correctly identified K =
5 for this dataset, it had equivalent optimum values for
K = 7, 8, 10, and 15. Given the poor performance of all
combinations for this dataset, this suggests that for high-
noise data such as this, N = 55 is insufficient to give good
results.

V/KL and V/BIC both performed poorly with all datasets,
in most cases overpredicting the number of clusters. As can
be seen in Figure 4, this overprediction tended to increase
with dataset size N. V/BIC resulted in a lower over-prediction
than V/KL.

Figure 5 shows a summary plot of misclassification
rate versus dataset size N for the VBEM versus K-means
comparison using Silhouette statistics only (both raw and
difference). This plot shows the greater performance of
V/SilR even more dramatically. While the misclassification
rates for the KM/SilT, KM/SilR, and V/SilT were generally
on the order of 10–20%, V/SilR was very stable, generally
between 3-4%.
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3.5. Test Results Conclusion. The VBEM algorithm can
correctly cluster shape-based data even in the presence of
fairly high amounts of noise, when paired with the Silhouette
statistic performed on the raw data clusters (V/SilR). Further,
V/SilR is robust in correctly predicting the number of
clusters in noise. The misclassification rate is superior to
K-means using Silhouette statistics, as well as VBEM using
all other statistics. Because of this, it was expected that
V/SilR would be the algorithm of choice for the experimental
microarray data. However, to maintain comparison, all four
VBEM/statistic algorithms were tested.

3.6. Experimental E. Coli Expression Data. The proposed
approach for gene clustering on shape similarity was tested
using time-series data from the University of Oklahoma E.
coli Gene Expression Database resident at their Bioinformat-
ics Core Facility (OUBCF) [24]. The exploration concen-
trated on the wild-type MG1655 strain during exponential
growth on glucose. The data available consisted of 5 time-
series log-ratio samples of 4389 genes.

The initial tests were run against genes identified as
being from metabolic categories. Specifically, genes iden-
tified in the E. coli K-12 Entrez Genome database at
the National Center for Biotechnology Information, US
National Library of Medicine, National Institutes of Health
(http://www.ncbi.nlm.nih.gov/) [25] (NIH) as being in cate-
gories C, G, E, F, H, I, and/or Q were chosen.

Because of the short-sequence lengths, any gene with
even a single invalid data point was removed from the
set. With only 5-time samples to work with in each gene
sequence, even a single missing point would have significant
ramifications in the final output. The final set of genes used
for testing numbered 1309.

In implementing the VBEM algorithm, initial values for
the algorithm were a0 = b0 = 0.0002. The algorithm was
set to iterate until the change in lower bound decreased
below 5×10−2 or became negative (which required the prior
iteration to be taken as the end value) or 200 iterations,
whichever came first. The optimal number of clusters was
arrived at by multiple runs of the algorithm at values of K,

the predefined number of clusters, varying from 3 to 15. K
was chosen in the same manner as in the test data sequences.

Figure 6 shows a summary of the final result of the
algorithm. Each subfigure shows the mean shapes clustered
by the particular algorithm/statistic. As can be seen from the
figure, V/KL resulted in an overclassification of structure in
the data. The other three algorithms gave more consistent
results. As a result of this, the V/KL clusters were removed
from further analysis.

3.7. Validation of E. Coli Expression Data Results. We val-
idated the results of our tests using Gene Ontology (GO)
enrichment analysis. To this end, the genes used in the
analysis were tagged with their respective GO categories and
analyzed within each cluster for overrepresentation of certain
categories versus the “background” level of the population
(in this case, the entire set of metabolic genes used). Again,
the Entrez Genome database at NIH was used for the GO
annotation information. As most of the entries enriched
were from the Biological Process portion of the ontology, the
analysis was restricted to those terms.

To perform the analysis, the software package Cytoscape
(http://www.cytoscape.org/) [26] was used. Cytoscape offers
access to a wide variety of plug-in analysis packages, includ-
ing a GO enrichment analysis tool, BiNGO, which stands
for Biological Network Gene Ontology (http://www.psb
.ugent.be/cbd/papers/BiNGO/) [27].

To evaluate the clusters, we modified an approach
used by Yuan and Li [28] to score the clusters based on
the information content and the likelihood of enrichment
(P-value < .05). Unlike [28], however, a distance metric
was not included in the calculations. Because of the large
cluster sizes involved, such distance calculations would have
exacted a high calculation overhead. Rather, the simpler
approach of forming subclusters of adjacent enriched terms
was chosen; that is, if two GO terms had a relationship to
each other and were both enriched, they were placed in the
same subcluster and their scores multiplied by the number of
terms in the subcluster. Also, a large portion of the score of
any term shared across more than one cluster was subtracted.
This method rewarded large subclusters, while penalizing
numerous small subclusters and overlapping terms.

The scoring equation for a cluster C, consisting of k
subclusters each of size nk is given as

ScoreC =
k∑

j=1

(
nj − 1

)
nj∑

i=1

log
(
Pr
(
ti j
))

log
(
pi j
)

−
(
n− 1
n

) ∑

tk∈Ci∩Cj∩
···∩Cn

log
(
Pr
(
tk
))

log
(
pk
)
,

(18)

where Pr(ti j) is the probability of GO term ti j being selected,
log(Pr(ti j)) is the negative of the information content of
the GO term, and pi j is the P-value (P < .05) of the GO
term ti j . Large subclusters are rewarded by larger values of
nk. Subtracting 1 from nk compensates for the “baseline”
score value; that is, the score a cluster would achieve if no
terms were connected. The final term in the equation is the
devaluation of any GO term shared by n clusters.



EURASIP Journal on Bioinformatics and Systems Biology 9

−1

−0.5

0

0.5

1

0 20 40 60 80 100

(a)

−1

−0.5

0

0.5

0 20 40 60 80 100

(b)

−0.5

0

0.5

0 20 40 60 80 100

(c)

−1

−0.5

0

0.5

0 20 40 60 80 100

(d)

Figure 6: Mean data shapes. (a) V/KL, (b) V/BIC, (c) V/SilT, (d) V/SilR.
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Figure 9: GO clusters resulting from V/BIC.

Table 5: Summary scores from E. coli data analysis.

Cluster/algorithm 1 2 3 4 5 Total score Average score

VSil/R 153.14 2004.55 22129.80 24287.48 8095.83

V/SilT 405.73 3.10 82.95 7343.89 7835.67 1958.92

V/BIC 4.42 422.42 513.70 44.64 11196.16 12181.33 2436.27

Given that algorithm was expected to group related
functions together, the expectation for GO analysis was
the creation of large, highly-connected subclusters within
each main gene cluster. Ideally, one such subcluster would
subsume the entire cluster; however, a small number of large
subclusters within each cluster would validate the algorithm.
The scoring equation (18) greatly rewards large, highly-
connected subclusters; in fact, given a cluster, the score is
maximized by having all GO terms within that cluster be
connected within a single subcluster.

Figures 7, 8, and 9 show the results of the clustering
using the three algorithms. Subclusters have been outlined
for ease of identification. In some instances, nonenriched GO
terms (colored white) have been removed for clarity. Visually,
V/SilR is the better choice of the three. It has fewer overall
clusters, and each cluster has generally fewer subclusters than
V/SilT or V/BIC.

The clusters were scored using (18). Table 5 shows a
summary of this analysis. As can be seen, V/SilR (3 clusters)
far outscored both V/SilT (4 clusters) and V/BIC (5 clusters),
both in aggregate and average cluster scores. Therefore,
the conclusion is that V/SilR provides the better clustering
performance.

4. Conclusion

Four combinations of VBEM algorithm and cluster statistics
were tested. One of these, VBEM combined with the
Silhouette statistic performed on the raw data clusters,
clearly outperformed the other three in both simulated and
real data tests. This method definitely shows promise in
clustering time-series microarray data according to profile
shape.
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Appendices

A. Calculation of VBE Step

Let us assume we are on iteration j + 1 and have both
q( j)(Cg = k) and q( j)(θ) available from iteration j. Then,

q( j+1)(Cg = k
) = ξg(k)

∑K
k=1 ξg(k)

, (A.1)

where

ln ξg(k)

=Ψ
(
γ′k
)

+
1
2

N∑

n=1

[(
Ψ
(
αk,n

2

)
−ln

βk,n

2

)
−(μ̂k,n−yg,n

)− N

Kk,n

]
,

(A.2)

where N : number of time samples; G: number of genes
(index g); Ψ(·): digamma function, and all other parameters
are calculated from the VBM step.

B. Calculation of VBM Step

Now we assume we have q( j+1)(Cg = k) from the prior VBE
step. Then,

q( j+1)
(
μn,k, σn,k

2
) = NIG

(

μ̂n,k, σn,k
2 | Kk,n,

αk,n

2
,
βk,n

2

)

,

q j+1(L) = Dir
(
γ̇1, γ̇2, . . . , γ̇k

)
,

(B.1)

where Kk,n =
∑G

g=1 q
j(Cg = k) + K ; μ̂k,n = K−1

k,n[Kμk,n,0 +
∑G

g=1 q
( j)(Cg = k)yg,n]; αk,n = αk0 +

∑G
g=1 q

j(Cg = k);

βk,n = βk0 + t(y); t(y) = ∑G
g=1(Cg = k)yg,n

2 + Kμk,n,0
2 + μ̂k,n;

γK ′ = γk +
∑G

g=1q
( j)(Cg = k); NIG(·): Normal-Inverse-

Gamma distribution; Dir(·): Dirichlet distribution.

C. Calculation of Lower Bound F(q(Cg), q(θ))

Once q( j+1)(Cg = k) and q( j+1)(θ) have been calculated, we
calculate the lower bound using the following:

F
(
q
(
Cg
)
, q(θ)

)

= −
N∏

n=1

K∏

k=1

KL

[
q
(
μn,k, σn,k

2
)

p
(
μn,k, σn,k

2
)

]

− KL
[
q(L)
p(L)

]
+ lnZ,

(C.1)
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2
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KL
[
q(L)
p(L)

]

= ln
Γ
(
γ′0
)

Γ
(
γ0
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K∑

k=1

[

ln
Γ
(
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)
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(
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(
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,

(C.3)

lnZ =
G∑

g=1

lnZg , (C.4)

where Zg = ξ
∑K

k=1 ξg(k) and ln ξ = −(N/2) ln 2π −Ψ(γ′0).
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