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Differential equation models for biological oscillators are often not robust with respect to parameter variations. They are based
on chemical reaction kinetics, and solutions typically converge to a fixed point. This behavior is in contrast to real biological
oscillators, which work reliably under varying conditions. Moreover, it complicates network inference from time series data. This
paper investigates differential equation models for biological oscillators from two perspectives. First, we investigate the effect of
time delays on the robustness of these oscillator models. In particular, we provide sufficient conditions for a time delay to cause
oscillations by destabilizing a fixed point in two-dimensional systems. Moreover, we show that the inclusion of a time delay also
stabilizes oscillating behavior in this way in larger networks. The second part focuses on the inverse problem of estimating model
parameters from time series data. Bifurcations are related to nonsmoothness and multiple local minima of the objective function.
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1. Introduction

The investigation of regulation mechanisms underlying
various properties of cellular networks has gained much
attention in recent years. Especially interesting in this setting
is the relation between the topology of a regulatory network,
often referred to as wiring diagram or interaction graph,
and the ability of the system to exhibit certain kinds of
dynamic behaviors. It is well known that feedback control
mechanisms are essential for phenomena such as hysteresis,
bistability, multistationarity, and periodic behavior (see, e.g.,
[1–4] or [5] for a more recent review).

While these feedback mechanisms are necessary to cap-
ture such phenomena, their existence is usually by no means
sufficient. A strong nonlinearity in the Goodwin oscillator
model, for example, is a very restrictive requirement for
oscillations [6, 7]. Cooperative interaction is also needed
to capture switch-like behavior between two or more stable
steady states [6, 8–10]. Thus, the qualitative behavior of
the system depends considerably on the exact parameter
values [11]. Periodic behavior, for example, can often only be
observed for a small fraction in the parameter space, which
is bounded by bifurcation manifolds [12].

This is in contrast to real biological systems, which
exhibit their function reliably under varying external con-
ditions and internal noise [13–15], raising the question
how this robustness is achieved. The design principles of
biological networks are assumed to be a result of a long
evolutionary process [16, 17], during which the principles
are optimized for a reliable functioning. Signaling networks,
for example, have to be sensitive to signals and robust against
random perturbations and internal fluctuations at the same
time [18–20]. Many cellular oscillators such as the circadian
clock have to maintain a constant period and amplitude
under a wide range of different external conditions [21].
The regulatory network underlying the cell cycle has to be
robust against perturbations, since dysfunctions may lead to
programmed cell death or to phenotypes that are not able to
survive for a long time, if at all [22, 23].

All these biological examples investigate a property of
organisms which can be described by functional robustness
[15]. However, the exact definition of robustness varies in
all these publications, which indicates that a formalization
of the concept of robustness has not yet been established [15,
24]. Further, this goes along with the question about which
mechanisms are potentially related to such a robustness.
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In this paper, we focus on the robustness of biological
oscillator models with respect to varying model parameters.
Time-scale differences, time delays, and, related to that,
feedback loops comprising a large number of interactions,
have already been shown to maintain periodic behavior
in chemical reaction systems (see [1, 25] and references
therein). Scheper et al. [25], for example, demonstrated
the importance of nonlinear regulation and time delays
on a model of the circadian oscillator. Chen and Aihara
[26] investigated the effect of large time-scale differences
and time delays on a two-component oscillator model.
Generalizations of their results can be found in [27]. A
stabilization of oscillations via time delays among others has
also been reported in [21, 28, 29]. While many of the earlier
studies refer to two-component systems, interesting recent
studies indicate the impact of multiple interlocked feedback
loops for the robustness of periodic behavior [30–35].

This work focuses on oscillations induced by including
a time delay into the differential equation model. This inclu-
sion can destabilize a stable fixed point by a Hopf bifurcation.
An ordinary differential equation (ODE) model describes the
cell as a homogeneous chemical reaction system, assuming
that the time between cause and effect of a regulatory process
can be neglected. This is of course a simplification, since time
delays play a role in many regulation processes. Examples are
the transport of mRNA from the nucleus to the cytoplasm,
diffusion processes, especially in eukaryotic cells, or the time
between binding of a transcription factor to the DNA and
the corresponding change in concentration of the regulated
gene product. The inclusion of such time delays into the
ODE models can change the dynamic behavior of the system
qualitatively. Furthermore, the period of oscillations has
been shown to be crucially regulated by such a delay [21].

The model class considered here is characterized by
monotonicity and boundedness constraints, which will be
explained in detail in Section 2.1. This class is similar to sys-
tems investigated by Kaufman et al. [10] and Pigolotti et al.
[36]. Since the proofs rely on very weak assumptions about
the differential equation system, they apply to many two-
component oscillator models which have already extensively
been studied (see, e.g., [6, 25, 26]). In this sense, the paper
generalizes some of the previous publications.

Section 2.2 shows results for two-dimensional systems. In
particular, sufficient conditions for the destabilization of a
steady state via a time delay are introduced, which imply the
existence of a stable limit cycle.

Higher dimensional feedback systems are studied in
Section 2.3. For a single negative feedback, system I shows
that the inclusion of a time delay can destabilize a stable
fixed point through a Hopf bifurcation, implying oscillating
behavior. In turn, an unstable fixed point cannot become
stable through a time delay.

Section 3 elucidates the problem of robustness of oscil-
lations from a different point of view, the inference of oscil-
lating models from time series data. We will demonstrate on
a two-gene network that bifurcations complicate parameter
estimation considerably. They are related to nonsmooth
error functions with multiple local optima. The special
focus in this study is on the bifurcations relevant for

chemical oscillator models. As already pointed out by several
authors (see, e.g., [37–40]), results emphasize that advanced
parameter estimation approaches for differential equations
are required in this context. Finally, conclusions and ideas
for future work are provided in Section 4.

2. Stabilizing Oscillations with Time Delays

2.1. Modeling Biological Oscillators

We consider the following ODE model:

ẋ(t) = f (x(t)), x ∈ Rn
+ (1)

with a continuously differentiable function f : Rn
+→Rn

+.
The function f is characterized by the monotonicity of
each component fi(xj) with respect to xj . This condition
assigns each regulator j of i either a purely activating or
a purely inhibiting function. In the first case, ∂ẋi(t)/∂xj >
0 independent of the state x of the system, the second
case corresponds to ∂ẋi(t)/∂xj < 0 for all states x. Such
systems can be illustrated by directed graphs G(V ,E) with
sign-labeled edges, often denoted interaction graphs, or,
equivalently, by the signed Jacobian matrix S f with elements
si j ∈ {+,−, 0} according to the edge signs in G(V ,E).
Properties of this model class and the role of feedback loops
are discussed in [1, 2, 4].

Moreover, we assume solutions of the system to be
bounded. This is a biologically plausible assumption, but
excludes simple linear models. This boundedness constraint
is, for example, fulfilled for all network models which
describe degradation of network components as a first-order
decay process and assume bounds for the production rate
[27]. Solutions of these systems have the tendency to con-
verge to steady states [41, 42]. Thus, more complex behavior
such as oscillations is typically caused by destabilizing this
steady state via Hopf bifurcations [43]. Such a bifurcation
requires the existence of a negative feedback loop in G(V ,E)
[2]. Hence we focus the analysis onto the investigation
of the stability of fixed points xs, which can be done via
investigating the eigenvectors of the Jacobian matrix J f (xs).
Elements of J f (xs) will be denoted by ai j := ∂ fi(x)/∂xj|x=xs
throughout the manuscript, dropping their dependence on
the coordinates of xs. According to Lyapunov’s indirect
method [44], a hyperbolic steady-state xs is stable if all
eigenvalues λ of J f (xs) have negative real parts [44, 45]. This
statement also holds for differential equations including time
delays [46]. Further, we will refer to conditions that imply
periodic behavior when a fixed point is destabilized.

2.2. Stabilizing Oscillations with Time Delays
in Two-Dimensional Systems

We consider the following delay differential equation (DDE)
system:

ẋ1(t) = f1
(
x1(t), x2(t − τ)

)
, ẋ2(t) = f2

(
x1(t), x2(t)

)

(2)
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with monotonicity and boundedness constraints as defined
above. For short, we will use the common notation xi for
xi(t) and xτi for xi(t − τ) subsequently. System 2 is infinite
dimensional, since the initial conditions are real-valued
functions xinit

i (t) : [−τ, 0]→R+, which can complicate the
analysis considerably. The stability of fixed points of (2)
can, however, analogous to ODE systems, be determined
by investigating the signs of the real parts of the roots of
the characteristic equation. This characteristic equation for
a fixed point xs of system (2) is derived via linearizing about
xs (see also [46–48]) as follows :

χτ(λ) = det

⎡

⎢
⎢
⎢
⎣
J1
f (xs) + e−λτJ2

f (xs)
︸ ︷︷ ︸

=:Jτf (xs)

− λI

⎤

⎥
⎥
⎥
⎦

(3)

with

J1
f (xs) =

(
a11 0
a21 a22

)

J2
f (xs) =

(
0 aτ12

0 0

)

,

aτ12 =
(
∂ f1(x1, xτ2)

∂xτ2

)∣∣
∣∣
x=xs

.

(4)

Calculating the determinant, χτ(λ) is given by

χτ(λ) = (a11 − λ)(a22 − λ)
︸ ︷︷ ︸

=:g(λ)

− e−λτaτ12a21︸ ︷︷ ︸
=:hτ (λ)

. (5)

Equation (5) is a polynomial of degree two for τ = 0, which
has two complex conjugate solutions λ1,2. For τ /= 0, it is a
transcendental equation with a countable infinite number of
roots. However, the number of roots in the right-half plane
is known to be finite [49]. Here, we will only investigate the
course of the two solutions λ1,2 in dependence of τ.

In two-component ODE systems, a single negative
feedback loop is not sufficient for sustained oscillations.
Additionally, one of the two components must activate itself
autocatalytically ([50] and [6, Chapter 9]). This results in two
different kinds of two-dimensional oscillators, the activator-
inhibitor oscillator (AIO) and the substrate-depletion oscillator
(SDO). Both are characterized by the course of their
nullclines and, related to that, the signed Jacobian matrix
S f (xs) at the unstable fixed point xs in the interior of the limit
cycle, which is

SAIO
f (xs) =

(
+ −
+ −

)

or SSDO
f (xs) =

(
+ +
− −

)

(6)

for the AIO and the SDO, respectively. Examples for these
two oscillator models can be found in [6, 26, 27]. A typical
course of the nullclines for an AIO is shown in Figure 1. Note
that both the AIO and the SDO do not strictly fulfill the
monotonicity condition. Due to the nonlinear autocatalytic
activation, the sign of the corresponding diagonal element
in J f (x) depends on the state x, as can be seen at nullcline
1 in the figure. This is, however, not a problem here, since
relevant statements still hold if the state space is partitioned
into regions in which the signs of the Jacobian matrix are

x1

x 2

Unstable fixed point

A

B

Nullcline 1
Nullcline 2
Limit cycle

Figure 1: Nullclines of an activator inhibitor oscillator model. If
the system has a single fixed point xs which is unstable, there exists
a stable limit cycle around xs according to the Poincaré-Bendixson
theorem. A necessary condition for xs to be unstable is the location
between the minimum A and the maximum B of nullcline 1, which
corresponds to the positivity of the element a11 in the Jacobian
matrix Jτ=0

f (xs).

constant [2]. Moreover, in many biological networks, a self-
regulation is often not a direct interaction, but comprises
intermediate components. An example is a protein that
promotes expression of its own gene as a transcription factor.
Here, strict monotonicity can again be reconstructed by
introducing two separate variables for mRNA and protein
concentration, respectively.

A stable limit cycle surrounds an unstable fixed point that
is given as the intersection of the two nullclines. A fixed point
xs can only be unstable if it is located between the minimum
A and the maximum B of nullcline 1. This corresponds to
a positive element a11 > 0 at the fixed point xs. It has been
shown that this condition becomes sufficient for sufficiently
large time-scale differences [26, 27]. Furthermore, it is not
required any more when including time delays, which was
exemplarily shown for a specific AIO model in [27].

Here, we show that a stable fixed point xs with signed
Jacobian matrix of the forms SAIO

f or SSDO
f (6) can indeed

always be destabilized through a time delay τ. This result
is an extension of the previous results described in [27],
where we proved that a bifurcation via an increase in the
time delay always destabilizes a fixed point. Furthermore, this
destabilization is caused by a Hopf bifurcation and therefore
creates a stable limit cycle. Thus, a11 > 0 becomes as well a
sufficient condition for the existence of a stable limit cycle
in AIO models, provided that the time delay is sufficiently
large. This is stated in the following Theorem 1. The proof is
given in Appendix A. We remark here that this theorem can
analogously be proven for SDO models.

Theorem 1 (instability of xs through a time delay). Assume
system (2) to have a stable fixed point xs for τ = 0 and signed
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Figure 2: Eigenvalues λ of the Jacobian matrix Jτf (xs) correspond to intersections of the two function g(λ) and hτ(λ). This Figure illustrates
how a stable fixed point is destabilized by a time delay τ. (a) For τ = 0, hτ=0 = a12a21 < 0 is a constant function, and the Jacobian matrix
Jτ=0
f (xs) has two negative real eigenvalues λ1 and λ2. (b) For τ > 0, the function hτ(λ) is a strictly increasing function that approaches 0

exponentially. Thus, increasing τ, the two real eigenvalues coalesce to a pair of complex conjugate eigenvalues, whose real parts eventually
become positive. (c) A further increase in τ leads to a new osculation point λ∗ of g(λ) and hτ(λ) at a value τ∗. This λ∗ is positive and real,
and hence corresponds to an unstable fixed point. (d) For τ→∞, the two eigenvalues approach the values λ∞1 = 0 and λ∞2 = a11 > 0.

Jacobian matrix SAIOf (xs) as given in (6). An increase in the
time delay τ eventually destabilizes xs.

Theorem 1 implies that there exists a threshold time delay
τth such that xs is unstable if τ > τth.

Corollary 1. If system (2) has a stable fixed point xs for τ = 0
and a11 > 0, there exists a threshold time delay τth such that xs
is unstable for τ > τ th. The proof is given in Appendix B

According to Theorem 1 and Corollary 1, if an AIO
model has a single fixed point that lies between the minimum
A and the maximum B of the first nullcline (Figure 1), this
fixed point is unstable for a sufficiently large time delay τ.

Figures 2, 3, and 4 illustrate how a stable fixed point xs
of an AIO is destabilized by a time delay τ. According to

(5), eigenvalues λ can graphically be interpreted as (probably
complex) “intersections” of the two functions g(λ) and hτ(λ)
(Figures 2 and 3). A sketch of the real parts of the two
eigenvalues λ1,2 as a function of τ is shown in Figure 4. For

Figure 2, we have used the functions g(λ) = (x + 10)2 − 300
and hτ(λ) = −250e−τλ, that is, parameter values a11 =
7.3, a22 = −27.3 and aτ12a21 = −250 in (5). With these
parameters, the Jacobian matrix Jτ=0

f (xs) has two negative
real eigenvalues λ1 and λ2. Increasing τ, these eigenvalues
eventually coalesce at a value τA (Figure 4(a)) and become
a pair of complex conjugates, whose real parts increase with
τ. The fixed point xs becomes unstable through a Hopf
bifurcation when the real part crosses the x-axis at τth.
Further increasing τ, the imaginary parts vanish again at
τ∗, and both real eigenvalues eventually approach 0 and a11,
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Figure 3: (a) Jτ=0
f (xs) has a pair of complex conjugate eigenvalues

with negative real parts. (b) The real part of this pair increases with
increasing time delay τ. (c) A further increase in τ eventually leads
to positive real eigenvalues, as already demonstrated in Figure 2.

Re(λ)
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τ

(a)
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a11

τth τ∗
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Figure 4: Schematic change of the real parts of the two eigenvalues
of an originally stable fixed point xs. (a) Jτ=0

f (xs) has two negative
real eigenvalues (compare also Figure 2). At τA, they coalesce to
a pair of complex conjugate eigenvalues whose real part increases
with τ. The system undergoes a Hopf bifurcation and the fixed point
xs becomes unstable when this real part crosses the x-axis at τ = τ th.
For large time delays, the two eigenvalues are real from τ = τ∗ and
approach the values 0 and a11 > 0. (b) Similar course, Jτ=0

f (xs), has
a pair of complex conjugate eigenvalues.

respectively. In Figure 3, aτ12a21 was changed to –350, and
Jτ=0
f (xs) has a pair of complex conjugate eigenvalues λ, λ

with negative real parts. The behavior of their real parts is
shown in Figure 4(b) and similar to the course in Figure 4(a).

We checked this result also numerically by separating
real and imaginary parts of (5) and solving for Re(λ) and
Im(λ). This was done using the Newton method iteratively
for a delay interval τ ∈ [0, 0.5]. Resulting real and imaginary
parts are shown in Figure 5. The course is in agreement
with that in Figure 4. The two eigenvalues for τ = 0 are
λ1,2 = −10±√50. Initial guesses λinit were set using a Monte
Carlo approach. Both eigenvalues present and built a pair of
complex conjugates with increasing real parts. Finally, the
imaginary part vanishes again and λ1 and λ2 approach 0
and a11, as described before. Simulation studies (not shown
here) indicate that the two eigenvalues λ1,2 investigated here
are the rightmost ones of the spectrum, since xs is exactly
destabilized when they cross the imaginary axis.

The inclusion of a sufficiently large time delay τ like in
(2) destabilizes xs via a Hopf bifurcation. This guarantees the
existence of a stable limit cycle at least around the bifurcation
value τth. Moreover, in case that xs is the only fixed point
of the system, destabilizing xs implies global convergence to
a stable limit cycle from arbitrary initial conditions. This
follows from the Poincaré-Bendixson theorem (PBT), which
states that the ω-limit set of a bounded forward trajectory of
a two-dimensional system is either a steady-state or a limit
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Figure 5: Solutions λ, λ of (5) as a function of the time delay τ for
parameter values a11 = 7.3, a22 = −27.3, and aτ12a21 = −250 (a)
and aτ12a21 = −350 (b). The equation was solved with the Newton
method and random initial starting points.

cycle [45]. In other words, a bounded solution of such a
system either converges to a fixed point or to a limit cycle.

2.3. Generalizations for Higher Dimensions

The analysis of systems with more than two variables can be
more complex, since concepts of the phase plane analysis and
related theorems can not always directly be transferred to the
Rn, n ≥ 3. An example is the PBT, which is often used to
show the existence of a stable limit cycle in two-dimensional
systems. There is no general analogous theorem for higher
dimensions. At least, the Hopf bifurcation theorem [44]

1 2 3 · · · n
+/− +/− +/− +/−

+/−
τ

Figure 6: Single negative feedback loop with a time delay τ for the
regulation of xn onto x1. Signs of edges are arbitrary except that their
product has to be negative.

claims the existence of such a limit cycle locally about the
bifurcation parameter. However, some extensions of the PBT
to differential equation systems whose flow is on a two-
dimensional manifold [45] and regulatory systems of more
than two components and special graph structures have
been considered [51, 52]. Among these systems is the single
negative loop structure, which I consider in the following.
It consists of a single negative feedback loop (Figure 6). The
product of edge signs has to be negative. We include a time
delay in the regulation of variable xn to variable x1. The
corresponding system of differential equations is given by

ẋ1 = f1
(
x1, xτn

)
,

ẋ2 = f2
(
x1, x2

)

...

ẋn = fn(xn−1, xn)

(7)

with monotonicity and boundedness constraints as specified
in Section 2. Gouzé [2] has shown that vector fields of
regulatory systems with interaction graphs lacking positive
circuits are injective, which implies that they have at most
one fixed point. The existence of such a fixed point for the
single negative loop system is shown in [53]. All together,
this system has a unique fixed point, and according to [51], a
stable limit cycle exists in case that this fixed point is unstable.
This allows once again for a reduction of the analysis of
the whole system onto the stability of its fixed point via a
linearization about xs and the spectrum of Jτf (xs).

The following theorem generalizes results in [27], where
the same statement was proven for two-dimensional systems.

Theorem 2. A Hopf bifurcation caused by an increase of the
time delay τ in system (7) always destabilizes a stable fixed
point. The pair of complex conjugate eigenvalues crosses the
imaginary axis from left to right,

dRe(λ)(τ)
dτ

∣
∣∣
∣
λ=iv

> 0. (8)

The proof can be found in Appendix C.

Theorem 2 shows that whenever an increase in the time
delay τ causes a Hopf bifurcation in the single loop system,
this bifurcation destabilizes a stable fixed point and creates a
limit cycle.

However, sufficient conditions for the occurrence of such
a bifurcation in negative loop systems similar to that in
two-dimensional systems remain to be investigated in this
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Figure 7: Bifurcation diagram of system (11) and bifurcation or
control parameter s1.

context. Also for the single loop system, the introduction of a
positive autoregulation of one of the components seems to be
sufficient for the existence of such a threshold value, with the
same convergence argument as for two-dimensional systems.
Unlike in two-dimensional systems, however, it is not clear
for arbitrary network structures whether the destabilization
of a fixed point implies the existence of a stable limit cycle
not only locally in the neighborhood of a bifurcation.

3. On the Impact of Bifurcations for
the Inverse Problem

In this section, the effect of bifurcations on the inverse
problem to estimate parameters from time series data is
investigated. We consider the following inverse problem.
Given a differential equation model ẋ(t) = f (x(t),ω) and
time series data D = (x̃i(t))i=1,...,n, t=1,...,T , the task is to
estimate values for the parameter vector ω by minimizing an
objective function F(ω,D):

ω̂ := arg min
ω∈Ω

F(ω,D). (9)

Optimization problems of this kind are important for all
fields in which differential equations are used to describe
dynamic behaviors, and model parameters are to be adapted
to experimental data. For nonlinear systems, these problems
are known to be difficult to solve, since the surface of
the objective function F has some undesirable properties.
Efficient optimization algorithms are required in order to
obtain reliable estimates within an acceptable time. Several
approaches have been proposed (see, e.g., [39] and the
subsequent discussions for an overview, or [37, 38] for
a method called “multiple shooting” and applications to
biological systems). Generally, these optimization problems
will become even more important in systems’ biology in the
future.

Here we show the impact of bifurcations on the objective
function F with a special focus on bifurcations relevant

for periodic behavior in regulatory systems. Results are
illustrated using the AIO model described in [27]:

ẋ1 = s1 − γ1x1 + k
x2

1

x2
1 + 1

1
1 + x2

, (10)

ẋ2 = s2 −
γx2

θ + x2
1

(11)

with parameter vector ω = (s1, s2, γ, k, θ). The true vector
is given by ω∗ = (0.04, 0.2, 0.035, 10, 0.1). The system has a
globally stable limit cycle for these values.

We investigate two objective functions F(ω,D), first,
the sum of squared errors between measurements x̃i(t) and
model predictions xi(t):

FMSE(ω,D) =
n∑

i=1

T∑

t=1

‖x̃i(t)− xi(t)‖2, (12)

and second, the sum of differences between x̃i(t) and xi(t),
weighted by the time difference Δt,

FArea(ω,D) =
n∑

i=1

T∑

t=1

Δt·‖x̃i(t)− xi(t)‖. (13)

In the limit Δt→ 0, (13) corresponds to the area between the
two “curves” xi(t) and x̃i(t). Values for xi(t) are numerically
calculated by a simple Euler discretization, and initial values
are set to xi(0) = x̃i(0). By the way, numerical integration
has to be performed in each step of a gradient-based
optimization approach and is usually the limiting factor
concerning computing time.

Of course, even without noise, (12) and (13) depend on
the dataset D , in particular, on the initial vector x(0) and the
sampling time points. Here, we show exemplary examples
for fixed initial conditions x(0) = (0, 0) and simulations
over the transient and two oscillation periods. Further, for
simplicity reasons, we vary only one single parameter α ∈ ω
at a time, the control parameter, while the rest is fixed to the
true values ω∗. Thus, the measurements x̃(t) are obtained via
simulations using ω∗, and x(t) corresponds to simulations
using ω∗ and a different value for the control parameter α.
In order to overcome the dependence of the error functions
(12) and (13) on the sequence of sampling time points, we
use a very small time step Δt = 0.01, which corresponds to
10.000 Euler steps for numerical integration in the simulated
range.

3.1. Nonsmoothness

Figure 7 shows the bifurcation diagram of system (11) with
control parameter s1. All bifurcation plots were created with
the program xppaut [54]. For s1 = 0, the system has two
separated ω-limit sets, a stable limit cycle and a stable fixed
point. Increasing τ, the stable fixed point coalesces with an
unstable one in a saddle-node (SN) bifurcation, and the
limit cycle becomes globally attracting. Finally, the system
undergoes a supercritical Hopf bifurcation (HB), in which
the second unstable fixed point becomes globally stable and
the limit cycle vanishes. For a value s1 < SN and initial
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Figure 8: Courses of (a) x1(t) and (b) x2(t) for different control parameter values s1 along with x(t)true and initial values x(0) = (0, 0). For
s1 = 0.02, x(0) is in the basin of attraction of the lower stable fixed point in Figure 7. If s1 exceeds the saddle node bifurcation, this leads to a
change of the qualitative dynamic behavior of x(t), which approaches the globally stable limit cycle for s1 > SN (here illustrated by s1 = 0.03).
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Figure 9: (a) FMSE(α) and (b) FArea(α) versus control parameter α = s1. Below the saddle-node bifurcation (SN), both values are almost
constant. The SN causes a jump in both error functions. Since the Hopf bifurcation (HB) is supercritical, the error changes only smoothly
around this value.

conditions x(0) = (0, 0), the system converges to the lower
stable fixed point. The difference between the two curves
x(t)true and x(t) is large, as shown in Figure 8 and control
value s1 = 0.02. Increasing s1, both objective functions
FMSE and FArea remain almost constant. Near the bifurcation
value SN, a slight increase of s1 causes an abrupt change
in the qualitative dynamic behavior from convergence to
oscillations (s1 = 0.03). This goes along with a jump in
the objective function at the saddle-node bifurcation, which
reaches zero at the true value s∗1 and increases smoothly
thereafter.

Such jumps in the error function are generally related to
bifurcations at which stable ω-limit sets disappear, typically

saddle-node or subcritical Hopf bifurcations in our context.
As a consequence, gradient-based methods might be much
more efficient when the step size is adapted during the
gradient descent to optimize F(ω,D).

3.2. Local Suboptimal Minima

Figure 10 shows the bifurcation diagram with control param-
eter θ. For low values of θ, the system has a stable limit cycle
around an unstable fixed point. This limit cycle vanishes at
a saddle-node bifurcation (SN), where an unstable and a
globally stable fixed point emerges. While the dependence
of the x1-coordinate of this fixed point is only marginal
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Figure 10: Bifurcation diagram of system (11) with bifurcation
parameter θ.

(Figure 11(a)), the coordinates of x2,s increase with increas-
ing θ (Figure 11(b)), which leads to a local suboptimal
minimum in the error functions, here at a value θ = 0.86
(Figure 12). Moreover, it can be seen that the true value θ∗

has a relatively small basin of attraction, which is bounded
by the saddle-node bifurcation (SN). On the contrary, the
basin of attraction for the local minimum at θ = 0.86, which
corresponds to the converging time series, is much larger.

Hence, starting a local search method with an arbitrary
initial parameter vector leads in most cases to suboptimal
minima which correspond to systems that converge to a
stable fixed point. These local minima render global search
methods such as simulated annealing or genetic algorithms
necessary, which usually require long running times [40].
Thus, efficient algorithms are needed in this context.

3.3. Ruggedness Near the True Parameter Value

Figure 13 shows the bifurcation diagram with control
parameter s2. The system has a stable limit cycle bounded
by two supercritical Hopf bifurcations (HBs). Within this
oscillating region, period and amplitude vary considerably
with the control parameter, as indicated in the simulations
in Figure 14. This dependency causes multiple local minima
in the error functions (Figure 15). Thus, even if the optimiza-
tion process is already started within the oscillating region in
the parameter space, a simple gradient search might fail to
find the true parameter value but get stuck in one of the local
minima.

This emphasizes again the necessity of efficient opti-
mization algorithms for parameter estimation of differential
equation models in general.

4. Conclusions

This paper investigated the robustness of sustained oscilla-
tions in regulatory systems with respect to varying model
parameters. Differential equations based on chemical reac-
tion kinetics, which are often used for this purpose, are not

always robust, and oscillations only occur in a small region
of the parameter space bounded by bifurcation manifolds.

In the first part of the paper, we focused on the
inclusion of time delays into the differential equations.
Time delays take some time between the cause and the
effect of a regulation into account, and they are known to
stabilize oscillations by enlarging the region in the parameter
space which correspond to periodic solutions. Since the
typical behavior of the class of systems considered here is
convergence to a fixed point, oscillations are usually induced
via destabilizing a fixed point through a Hopf bifurcation.
We investigated the stability of a fixed point in dependence
of the time delay. We provided sufficient conditions for a
time delay to induce oscillations in two-dimensional systems,
in particular, activator-inhibitor oscillator and substrate-
depletion oscillator models, which are the typical oscillator
models in two dimensions. These conditions are graphically
defined in terms of the qualitative course of the nullclines,
which are usually easily accessible. Specifically, if the system
has a single fixed point located between the minimum and
the maximum of one of the nullclines, it can always be
destabilized by a sufficiently large time delay, which implies
sustained oscillations. Results are based on rather general
assumptions about the underlying differential equation
system, which hold for many related oscillator models.

Moreover, for single-loop systems with an arbitrary
number of components we showed that a Hopf bifurcation
that is caused by increasing the time delay always destabilizes
a stable fixed point. The real parts of the eigenvalues of the
Jacobian matrix at the fixed point change signs from negative
to positive. Thus, a stable fixed point can loose stability by
increasing the time delay, which leads to the existence of a
stable limit cycle, but an unstable fixed point cannot become
stable.

Here, the analysis of the system was done by linearizing
the system about a fixed point and investigating the stability
of this fixed point via the spectrum of eigenvalues. This facil-
itates the analysis of the long-term behavior considerably. We
referred to the conditions necessary for such a destabilization
of a fixed point to imply sustained oscillations. The Poincaré-
Bendixson theorem is extremely useful in this context for
two-dimensional systems. Similar theorems exist for higher-
dimensional systems with special interaction graphs. The
single-loop system considered here belongs to these systems.
However, for a further generalization of these results to
higher dimensional systems, the following questions remain
to be investigated in the future. First, can the class of systems
that have a unique fixed point be further characterized? It
is already known that networks lacking a positive feedback
loop have at most one fixed point. Second, how can this
be further generalized to networks that also contain positive
feedback circuits? Networks with only positive loops cannot
have stable limit cycles. Consequently, oscillations can only
occur in networks that have at least one negative loop.
Contrary to negative feedback control, positive loops can
lead to multiple fixed points. Hence for such “mixed-circuit
networks,” it is not sufficient any more to show the existence
of a fixed point. It also has to be investigated whether it
is unique. However, necessary conditions for multiple fixed
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Figure 11: Courses of (a) x1 and (b) x2 for varying control parameters θ. The system shows periodic behavior for the real value θ∗ = 0.1 and
converges to a globally stable fixed point for all other values shown. The coordinates of this stable fixed point remain low for x1 (the courses
cannot be distinguished in this plot), and increase with increasing θ for x2. This causes a smooth local minimum at θ = 0.86 in the error
function (Figure 12).
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Figure 12: (a) FMSE(α) and (b) FArea(α) versus control parameter α = θ. The true value θ∗ has a relatively small basin of attraction, which is
bounded by a saddle-node bifurcation (SN). The basin of attraction for the local minimum at θ = 0.86, which corresponds to a system with
globally stable fixed point, is much larger.

points in positive loop systems are also known to be very
restrictive, and many of these models seem to have a unique
fixed point, too. Third, in which cases does a destabilization
of a fixed point lead to oscillating behavior? And forth, what
are sufficient conditions for the existence of a threshold time
delay τth?

The second part of this work investigated the influence
of bifurcations on the inverse problem to estimate model
parameters from time series data. Such bifurcations are
generally related to nonsmoothness and multiple local
minima of the objective function to be optimized in this
setting. Although these phenomena are generally not new,
the focus was on the special properties occurring in the class

of oscillating models considered here. Global search methods
are required to find the real optimum. Together with the
numerical integration, these methods are usually extremely
time-consuming, even for small systems with only a few
parameters.

In a realistic setting, the problem is even worse. First,
the optimization problem is of course multidimensional.
All values of model parameters have in principle to be
found at a time, which renders a comprehensive search and
an investigation of the whole objective function difficult.
Second, the data is usually noisy and sparse, leading to ill-
posed optimization problems. Noisy datasets also mean that
the measured initial condition x̃(0) might not always be
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Figure 13: Bifurcation diagram for system (11) with bifurcation
parameter s2.

the best choice for x(0). Generally, x(0) should be included
into the objective function as an additional variable that
has to be optimized as well, which increases the dimension
of the inverse problem even further. Moreover, the dataset
might also contain missing values or unobserved variables.
This raises additional problems, and estimating parameters
by minimizing the residual error might fail in this context
anyway. In this setting, stochastic approaches might be more
convenient, since they take the noise in the dataset into
account. Bayesian learning approaches, for example, allow
for an appropriate regularization via prior distributions over
model parameters. Concluding, the development of efficient
approaches for parameter estimation in differential equation
models remains a challenging research field in the future.

Appendices

A. Proof of Theorem 1

We prove this statement by showing that one of the
eigenvalues of the Jacobian matrix Jτf (xs) approaches the
positive element a11 in the limit τ→∞, that is, limτ→∞λ(τ) >
0 or, equivalently, limτ→∞χτ(λ = a11) = 0. The function g(λ)
in (5) is a parabola with two zeros a11 and a22, f (λ = a11) =
f (λ = a22) = 0. Furthermore,

lim
τ→∞hτ(λ) =

⎧
⎪⎪⎨

⎪⎪⎩

−∞, λ < 0,

aτ12a21, λ = 0,

0, λ > 0.

(A.1)

This implies limτ→∞hτ(λ = a11) = 0 and hence
limτ→∞χτ(λ = a11) = f (λ = a11)− limτ→∞hτ(λ = a11) = 0,
which implies further that λ = a11 > 0 is an eigenvalue of
Jτf (xs) in the limit τ→∞. Consequently, xs cannot be stable.

B. Proof of Corollary 1

We use the following two statements for AIOs, which are
derived in [27].

(1) The real part of an eigenvalue λ of the Jacobian matrix
Jτf (xs) is a continuous function of τ, Re(λ)(τ) ∈
C1(R+→R).

(2) Moreover, a sign change of the real part of an
eigenvalue λ caused by an increase of the time delay
τ is always a change from positive to negative, and
includes a pair of complex conjugate eigenvalues
λ1,2 = u ± iv with nonzero imaginary parts v /= 0,
that is, ∂Re(λ)/∂τ|λ=iv > 0. Increasing s1, both
objective functions FMSE and FArea, which are shown
in Figure 9, remain almost constant.

Statement (1) allows to apply the intermediate value
theorem (IVT). Starting with a stable fixed point xs for τ = 0
whose real parts of the eigenvalues of J f (xs) are negative,
Re(λ)(τ) has at least one zero according to the IVT and
Theorem 1. Uniqueness of this zero follows from statement
(2), since a second zero would be a transition from positive
to negative, that is, ∂Re(λ)/∂τ|λ=iv < 0, a contradiction.

C. Proof of Theorem 2

Linearizing system (7) about xs, the characteristic equation is

χτ(λ) =
n∏

i=1

(aii − λ)

︸ ︷︷ ︸
=:g(λ)

− e−τλaτ1,n

n∏

i=1

ai,i−1

︸ ︷︷ ︸
=:hτ (λ)

= 0. (C.1)

The equation g(λ) = hτ(λ) has to be solved. For this, it is
convenient to take the logarithm of both sides, which gives
the condition

n∑

i=1

ln(aii − λ) = −λτ + ln
(
aτ1,n

n∏

i=1

ai,i−1

)
. (C.2)

Calculating the derivatives of both sides with respect to λ
leads to

d ln g(λ)
dλ

= −
n∑

i=1

(aii − λ)−1,

d lnhτ(λ)
dλ

= ∂ ln g(λ)
∂τ

dτ

dλ
+
∂ lnhτ(λ)

∂λ
= −λdτ

dλ
− τ.

(C.3)

Resolving for dτ/dλ yields

dτ

dλ
= λ−1

( n∑

i=1

(aii − λ)−1 − τ

)

. (C.4)

Here it is worth noting that although τ is a real number,
the derivative dτ/dλ is complex. It can be understood as the
inverse of the derivative dλ/dτ = dRe(λ)/dτ + i(dIm(λ)/dτ),
which is defined by the condition

(
dλ

dτ

)

τ∗
·
(
dτ

dλ

)

λ∗=λ(τ∗)
= 1. (C.5)

We consider the real parts of both sides in (C.4):

Re
[
dτ

dλ

]
= Re

[

λ−1

( n∑

i=1

(aii − λ)− τ

)]

(C.6)
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Figure 14: Courses of (a) x1 and (b) x2 for different values of the control parameter s2, which have been chosen between the two Hopf
bifurcations in Figure 13. Both amplitude and period of the oscillations vary with varying control parameter value, which causes several
local minima in the error function (Figure 15).
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Figure 15: (a) FMSE(α) and (b) FArea(α) versus control parameter α = s2. The dependence of the amplitude and especially the period of the
oscillations on the control parameters cause several local minima in both error functions.

with

Re
[
dτ

dλ

]
= 1

‖dλ/dτ‖2
dRe[λ]
dτ

,

Re

[

λ−1

( n∑

i=1

(aii − λ)− τ

)]

= Re

[

λ−1
n∑

i=1

(aii − λ)−1

]

− Re
[
τ

λ

]

= 1
‖λ‖2

Re

[

λ
n∑

i=1

(aii − λ)

]

− τ

‖λ‖2
Re[λ].

(C.7)

Inserting λ = iv and resolving for dRe[λ]/dτ show that this
derivative is positive for purely imaginary eigenvalues λ:

dRe[iv]
dτ

= ‖d(iv)/dτ‖2

v2
Re

[

− iv
n∑

i=1

(aii − iv)−1

]

= ‖d(iv)/dτ‖2

v2
Re

[ n∑

i=1

v2

a2
ii + v2

]

= ‖d(iv)/dτ‖2

a2
ii + v2

> 0.

(C.8)
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theorem for monotone cyclic feedback systems,” Journal of
Dynamics and Differential Equations, vol. 2, no. 4, pp. 367–
421, 1990.

[52] J. Mallet-Paret and G. R. Sell, “The Poincaré-Bendixson
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