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In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown
that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings
apply to metabolic networks. To this end, we extend a previously proposed method by changing the null model for determining
motif enrichment, by using interaction types directly obtained from structural interaction matrices, by generating a distribution
of partial derivatives of reaction rates and by simulating enzymatic regulation on metabolic networks. Our findings suggest that
the conclusions drawn in previous work cannot be extended to metabolic networks, that is, structurally stable network motifs are
not enriched in metabolic networks.
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1. Introduction

Metabolic networks are studied for a number of purposes,
one of which is metabolic engineering, the optimization of
industrial processes through directed genetic changes using
recombinant DNA technology [1]. Another example is syn-
thetic biology, “the engineering-driven building of increas-
ingly complex biological entities for novel applications” [2].
These fields require the understanding of cellular function
in detail, including the dynamics of all chemical compounds
(metabolites) inside a cell. Kinetic models of metabolic
networks provide a convenient and compact representation
of the biochemical modifications (over time) of all chemical
compounds in living cells (metabolism). These modifications
are interesting because many phenotypic characteristics of a
cell are determined by metabolites rather than by genes and
proteins directly.

Unfortunately, the parameters of the kinetic models are
very difficult to determine experimentally. Therefore, current
analysis of metabolic networks relies mainly on structural

information, available in the form of stoichiometry of the
the chemical reactions. An example is provided by Flux
balance analysis (see [3]). FBA allows us to determine the
distribution of fluxes (i.e., reaction rates in steady state),
assuming that the cell tries to optimize some objective
(e.g., maximum biomass), and imposing constraints based
on mass conservation and thermodynamics. This method,
though extensively and successfully applied, does not pro-
vide any information about network dynamics (it links
the stoichiometry to steady-state behavior). This is why
in this paper, we try to infer dynamic properties of cell
metabolism, based on the (local) structural information of
metabolic networks, in terms of small network building
blocks.

The biochemical interactions in large biological networks
can be conveniently represented as directed graphs, in
which the nodes represent the constituent building blocks
(e.g., genes, proteins, metabolites, etc.), and the edges
represent the interactions between them. These graphs can
be decomposed into small subgraphs, called network motifs.
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The enumeration of all small network motifs (of three or
four nodes) summarizes the local connectivity patterns of a
large complex network. It has been shown that certain motifs
are enriched (over-represented) in biological networks when
compared to randomly constructed networks [4]. However,
at present it is not clear what determines the particular
frequencies of occurrence of network motifs in biological
networks. One might hypothesize that some motifs possess
properties important enough to entail evolutionary advan-
tages, leading to relatively high occurrence. In [5], it has
been investigated whether the stability of a motif is such
a network property, by inspecting the correlation between
over- or under-representation and a measure devised for
structural stability of network motifs.

The method in [5] consists of two main steps:

(i) calculate over- and under-representation of all
motifs, that is, inspect which motifs occur more or
less frequently in a biological network than would be
expected by chance;

(ii) assign each motif a structural stability score (SSS);
a motif is nothing more than a very small graph,
containing no parameters that describe particular
dynamics; the structural stability therefore assesses
the fraction of parameter settings for which the motif
is stable.

The data used in [5] consists of two transcriptional reg-
ulatory networks of Escherichia coli and Saccharomyces
cerevisiae, a developmental transcriptional network of
Drosophila melanogaster, the signal transduction knowledge
environment (STKE) network, and a neural connection map
of Caenorabditis elegans.

In recent work, the method described in [5] has met
some criticism. In [6], it was argued that this work was
too limited, since a single motif can exhibit a broad range
of dynamic activity. Therefore, a motif cannot be simply
classified by its structural stability. Furthermore, according
to [7], structural stability is not an intrinsic property of
biological networks; a network made up of a lot of struc-
turally stable motifs is not necessarily stable itself. Therefore,
it is not obvious why evolution should prefer structurally
stable motifs. Moreover, when the baseline method of [5] is
changed just slightly (by using a different null model for the
generation of random instances of the given network), the
enrichment of structurally stable motifs is lost.

However, according to [8], the design principles of
metabolic networks differ from other biological networks. It
was observed that motif enrichment profiles across metabolic
networks are highly correlated, whereas this correlation
between metabolic networks and other kinds of biological
networks is much less. This motivated us to extend the
analysis of [5] to metabolic networks, to test the hypothesis
that structurally stable motifs are enriched in metabolic
networks. This in turn could indicate that structural stability
has driven the evolution of metabolic networks towards
stable dynamic systems.

In order to make the proposed method more suitable
for metabolic networks, we propose the extensions listed in

the head row of Table 1. The flowchart in Figure 1 shows
how our overall method results from the composition of the
baseline method and the various additions.

The baseline method calculated the enrichment score
(called the z-score) of a motif by comparing the number
of times it occurred in a real network as compared to
randomized versions of this network. The collection of
random networks is called the null model. The authors of
[5] used the Erdös-Rényi (ER) method do randomize their
networks. However, this method produces networks which
have a Poisson degree distribution, whereas it is commonly
observed that biological networks have degree distributions
that follow a power law, that is, they are scale-free [9].
Therefore, we propose to use a different null model. The
results change significantly.

The next addition deals with interaction types. Because
of the nature of the networks used in [5], it was hard
to determine whether an interaction between two nodes
should be an activating (positive) or an inhibitory (negative)
interaction. Determining this in metabolic networks is
straightforward. We propose to subdivide each motif into a
group of motifs of similar structure but different interaction
types, represented by edge colors. This might provide more
insight in particular motif enrichments.

In the second step in [5], the structural stability score
(SSS) of a motif is assessed by a process which involves
sampling from a uniform distribution (see Figure 2). The
sampled values represent interaction strengths between
nodes in the networks. For the datasets in [5], it was
not possible to assess the magnitude of these interactions,
which is why the interaction strengths were sampled from
a U(−1, 1) (uniform in the range −1 to 1) distribution.
However, since this paper deals with a metabolic network,
a distribution built on kinetic parameters associated to our
specific network can be constructed, and we can change
the uniform distribution to one that is biologically more
plausible.

Metabolic networks contain a number of hubs (i.e.,
nodes with a very high degree compared to the great
majority of nodes). These hubs are mostly cofactors, or
currency metabolites, which typically are not the metabolites
of interest in a reaction. These currency metabolites have a
large number of interactions with other metabolites, whereas
in reality these interactions are only indirectly present.
Interactions with hubs in our modeled metabolic network
lead to inflated motif frequencies for some motifs, which
is why we remove currency metabolites from our network,
using a similar approach as in [10].

The last addition to the method proposed in [5]
deals with enzymatic regulation. Metabolic networks are
often represented by their stoichiometric matrix, containing
membership information of all metabolites in all reactions.
However, in a cell, not all reactions are active all the time. The
majority of reactions inside a cell are catalyzed by enzymes,
which are in turn encoded for by genes. So the transcriptome
can influence the metabolism of a cell by means of enzymatic
regulation. We present a way to model this by using gene
expression data.
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Table 1: Paper overview. The “method label” is used throughout the paper for reference. The “null model” indicates the type of network
model (i.e., topology) used to generate random networks in the enrichment analysis (see Section 2.6). SSS is the structural stability score
(see Section 2.5). “Currency metabolites” indicates whether these metabolites have been considered in the motif count (see Section 2.9).
“Enzymatic regulation” indicates whether the actual enzymatic reactions activity has been taken into account (see Section 2.10). Finally,
“result section” and “method section” list the sections in which the method is first described.

Method label Null model Colored edges SSS Currency metabolites Enzymatic regulation Result section Method section

A ER No Prill Present No 3.1 —

B Switching No Prill Present No 3.2 2.6

C Switching Yes Prill Present No 3.3 2.7

D Switching Yes BRENDA Present No 3.4 2.8

E Switching Yes BRENDA Removed No 3.5 2.9

F Switching Yes BRENDA Removed Yes 3.6 2.10

Coloured edges
Section 2.7 (C)

Currency
metabolites

Section 2.9 (E)

Gene expression
compendium

Section 2.10 (F)

Null model
Section 2.6 (B)

Motif enrichment
Section 2.4

Structural
stability analysis

Section 2.5

BRENDA
distribution

Enzyme
concentrations

BRENDA

(D)
Section 2.8

Results

Baseline method
(A)

Interaction
network

Section 2.7

Yeast
stoichiometry

Section 2.1

Figure 1: Flowchart of the method proposed in this paper. The blue area represents the baseline method as presented in [5], so method A
from Table 1. The cylinder shapes represent data sources that are used, the rectangular shapes represents methods as described in the main
text. The section numbers denote the method section in which the particular method is first described.

2. Methods

2.1. Datasets

2.1.1. Metabolic Network. We chose to study the S. cerevisiae
metabolic model presented in [11]. This model not only
contains a quite complete list of chemical reactions including
compartmentalization information, but also the great major-
ity of reactions are associated to genes. The authors provided
us with a newer version of this model (S. cerevisiae iMM904),
which remains to be published. See Table 2 for details.

2.1.2. BRENDA. To construct the distribution to use in the
structural stability analysis, we used the enzyme database

Table 2: Summary of the data from [11].

Items Number

Metabolites 1223

Irreversible reactions 929

Reversible reactions 477

Total number of reactions 1883

BRENDA (http://www.brenda.uni-koeln.de/). BRENDA is
indexed with Enzyme Commission (EC) numbers, which is a
classification scheme for enzymes. Each EC number specifies
an enzyme-catalyzed reaction of which measurements of
enzymatic parameters are listed.
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Figure 2: Schematic overview of the process of calculating the SSS. The motif in the top left corner is transformed to the adjacency matrix.
Next, 10 000 Jacobians in steady state are generated by filling the nonzero entries of the adjacency matrix with values sampled from U(−1, 0)
and U(−1, 1) distributions. In this figure, only four Jacobians are generated. Next the eigenvalues of all Jacobians are calculated. When
all eigenvalues of a Jacobian are negative numbers with zero imaginary part, the steady state corresponding to that Jacobian is called
(asymptotically) stable without oscillations. The SSS is the fraction of these steady states over all 10 000 steady states. Assuming that the
four Jacobians in this example have the stability shown in the right of the figure, the SSS is 0.25.

Table 3: Summary of the data from [12].

Items Number

Experiments 165

Conditions 54

Genes 9335

Genes in [11] 902

2.1.3. Microarray Data. We used the microarray com-
pendium from [12], a large collection of microarray exper-
iments performed under a number of different growth
conditions. Each experiment lists three different values for
a large number of genes, namely the microarray analysis
suite (MAS) value [13], the robust multichip analysis (RMA)
value [13], and a detection P-value [14]. These datasets are
used to rank genes according to their expression profile over
multiple conditions. This ranking in turn defines different
instantiations of our metabolic network (see Section 2.10).
Table 3 shows the dimensions of this dataset.

2.2. Dynamic Systems and the Jacobian. A metabolic network
is a dynamic system, which can be described by a set
of differential equations [15]. For a metabolic network
consisting of three metabolites the differential equations

are

dx1

dt
= f1(x),

dx2

dt
= f2(x),

dx3

dt
= f3(x),

(1)

where f1, f 2, and f3 are nonlinear functions of the vector of
all metabolite concentrations x. The behavior of this dynamic
system around a steady state can be described by the Jacobian
J of the system:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1(x)
∂x1

∂ f1(x)
∂x2

∂ f1(x)
∂x3

∂ f2(x)
∂x1

∂ f2(x)
∂x2

∂ f2(x)
∂x3

∂ f3(x)
∂x1

∂ f3(x)
∂x2

∂ f3(x)
∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

which is the square matrix of all first-order partial derivatives
of a vector-valued function [15]. This allows the dynamic
system to be written as:

dx
dt
= J·x, (3)
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which is the first order Taylor expansion of the dynamic
system in some state x, a linear approximation of the system
at state x. Equation (3) describes the evolution over time
of the vector of metabolite concentrations x (trajectory).
Steady states are constant trajectories, hence they can be
obtained as solution of (3), when the time derivative of the
concentrations is set to zero (metabolite concentrations stay
constant over time). For a more detailed explanation, see the
Jacobian section in Supplementary Material available online
at doi:10.1155/2009/630695.

2.3. Network Motifs. A metabolic dynamic system as
described in Section 2.2 is represented by a metabolic net-
work, which is a graph consisting of metabolites (nodes) and
interactions (edges). A network motif is a very small directed
subgraph. This work only deals with motifs consisting of
three nodes of two to six directed edges (see Supplementary
Figure 20 for the results with 4-node motifs). Since the
pioneering work of Milo et al. [16], network motifs have been
widely used to study the local topology of many different
biochemical networks. In this paper, we have therefore
chosen to use network motifs analysis also for metabolic
networks (rather than devising alternative building blocks).
Each motif in a metabolic network is a set of three connected
metabolites that have interactions between them, such that
the shortest path between any of the three metabolites
is at most two. Because of this, one metabolite can be
a member of multiple motifs. The same is true for an
interaction.

Although sets of three metabolites might have very dif-
ferent interaction strengths, motifs are only concerned with
structure, that is, the interaction between the metabolites
is binarized, either there is an interaction or there is not.
This leads to 13 possible network motifs (see Supplementary
Figure 9(a)). The interaction information between all nodes
(i.e., metabolites) of the motif is summed up in the
adjacency matrix. Such a matrix has a nonzero entry at
(i, j) when metabolite i is influenced by metabolite j (see
Supplementary Figure 9(b) for an example). The adjacency
matrix contains only the binarized interaction information
between three metabolites, whereas the Jacobian contains the
actual interaction strengths between the metabolites.

2.4. Motif Enrichment. Motif enrichment is determined by
generating a large number of randomized versions of the
original network, and calculating a z-score for each motif i

Zi = Nreali −mean
(
Nrandi

)

std
(
Nrandi

) , (4)

where Nreali is the number of occurrences of motif i in the
real network and Nrandi the set of occurrences of motif i
in the random networks [17]. A high z-score for motif i
indicates that the probability of finding motif i as often as in
the real network by chance is low. Conversely, a large negative
z-score indicates that the probability of finding motif i as

little as in the real network is low. Z-scores are transformed
into normalized z-scores (NZS) of unit length by using

NZSi = Zi√∑k
j=1Z

2
j

, (5)

in which k is the number of motifs. These NZS can be
compared across different networks.

2.5. Structural Stability. In Section 2.2, we have shown how
to linearize a dynamic system (representing a metabolic
network) around a steady-state x0. A steady state is asymptot-
ically stable, when all the trajectories of the dynamic systems
starting in a perturbed state (in a small neighborhood of
the considered steady state) eventually converge to the steady
state (while remaining bounded). A necessary and sufficient
condition for asymptotic stability is that all the eigenvalues
of the Jacobian have a negative real part. If the eigenvalues
with a negative real part have a null imaginary part, the per-
turbed trajectories will converge to the steady-state without
oscillations. In Prill et al. [5], the SSS is defined as a measure
for the probability that the dynamical systems that can be
associated to a given motif are locally (i.e., around a steady
state) asymptotically stable with no oscillatory modes (such a
condition is more restrictive than just demanding asymptotic
stability). This score is determined by first generating a large
number of possible Jacobian matrices for a given motif, and
subsequently calculating the eigenvalues of each of these
Jacobians matrices (see Figure 2). The SSS is the fraction
of the Jacobians of which all eigenvalues have a negative
real part and zero imaginary part. As it is computationally
intractable to instantiate every possible Jacobian, we sample
from the space of possible Jacobians, which is done by
instantiating 100 000 Jacobians in which each nonzero entry
is sampled from a given distribution. In Prill et al. [5],
Jacobians are constructed by assigning a value sampled from
a U(−1, 1) distribution (uniform over range (−1,1)) to all
nondiagonal, nonzero entries and a value sampled from a
U(−1, 0) distribution to all diagonal entries of the adjacency
matrix of a motif. Note that the range of the SSS is [0, 1], with
a value of 1 indicating that any dynamic system associated to
the motif is stable (i.e., the interaction signs and strengths do
not influence the stability). On the other hand, a low value
indicates that only a small fraction of all possible parameters
of the Jacobian can guarantee stability.

2.6. Method B: Random Networks. The calculation of the
NZS (Section 2.4) requires randomizing networks and
counting motifs. Both of these tasks are performed by
the Mfinder and FANMOD programs [18, 19]. These two
software tools yield the same results, but FANMOD can
handle colored edges, whereas Mfinder cannot. In this work,
two different methods of generating random networks are
used: the Erdös-Rényi (ER) method and the switching method
[20], which is the default method used by both Mfinder and
FANMOD.

The ER method puts p nodes on a canvas and subse-
quently adds q directed edges, uniformly picked from the set
of all possible p·(p − 1) edges. Networks generated by this
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method have node degree distributions that follow a Poisson
distribution, whereas it is commonly observed that biological
networks are scale-free, that is, their node degree distribution
follows a power law [21]. Random networks generated
using this method are therefore deemed less suitable for
representing biological networks. Another problem is that
the probability of generating bidirectional edges is low;
bidirectional edges are rare in ER networks. Network motifs
with such edges are hardly found in ER random networks,
resulting in low (zero) variance and thus in an infinite NZS,
which is obviously an undesired effect.

The switching method on the other hand operates as
follows switchingmethod. The original network is used as
basis and a pair of edges (A → B,C → D) is repeatedly
randomly selected and switched to obtain (A → D,C → B).
The exchange is only performed if it does not introduce
an edge that already exists or a self edge, that is, an edge
from a metabolite to itself. Furthermore, unidirectional
edges are only exchanged with other unidirectional edges
and bidirectional edges only with bidirectional ones. Edge
“colors” (corresponding to some discrete property) can also
be taken into account, that is, edges are only switched
when they have the same color. The process is repeated
a sufficient number of times for the random network to
show good mixing (for details, see [18]). The switching
method preserves the number of incoming, outgoing, and
bidirectional edges of each node of the real network, and
thus the exact degree distribution, making it a more reliable
enrichment analysis in biological networks.

2.7. Method C: Network Structure Generation. It is not
straightforward to model a metabolic network. Where it
is quite clear what an edge in a transcriptional regulatory
network means, namely the regulatory effect of one gene
on another, it is less clear what the meaning is of such an
edge between two metabolites in a metabolic network. We let
edges represent influences between metabolites as they would
occur in the Jacobian matrix of the dynamic system, (see (3)).
In our case, the Jacobian has size m×m with m the number
of metabolites. Each element Ji, j represents the influence of
metabolite j on metabolite i.

The following is built on the knowledge that for a
metabolic network the Jacobian matrix J is given by

J = S·∂v
∂x

∣∣∣∣
x0

, (6)

in which S is a stoichiometric matrix of size m × r,
with m and r the number of metabolites and reactions,
respectively, and (∂v/∂x)|x0 is a matrix of size r × m of
partial derivatives of the vector of reaction rates v with
respect to the vector of metabolite concentrations x in
steady-state x0. A stoichiometric matrix contains the reaction
coefficients of every chemical reaction in a network. Each
reaction is represented by a column in the matrix in which
substrates and products of that reaction have some negative
or positive integer value, respectively. The metabolic network
(Section 2.1.1) results in a stoichiometric matrix S with m =
1223 and r = 1883. Note that each of the 477 reversible
reactions is represented as two unidirectional reactions.

From the stoichiometric information in S, a matrix A can
be constructed which has the same dimensions as (∂v/∂x)|x0
and has an entry of 1 at position (i, j) when the partial
derivative of reaction j w.r.t. the concentration of metabolite
i is nonzero and 0 otherwise. When we substitute (∂v/∂x)|x0
in (6) by A, we obtain a Jacobian which can be used to
construct matrices Juc and Jc representing an uncolored and a
colored model of our network, respectively (later, edge color
will be used to differentiate different type of interactions).
Juc is constructed such that Juci, j is 1 when metabolite j has
a positive effect on metabolite i, that is, metabolite j is a
substrate in at least one reaction where metabolite i is a
product, and 0 otherwise. Jc on the other hand, has three
interaction types: positive, negative, and combined, which
are (arbitrarily) represented by 1, 2, and 3, respectively. A
positive interaction is defined similar as for Juc. A negative
interaction at Jci, j indicates that metabolites i and j are both
substrates in the same reaction. A combined interaction is
a combination of these two interaction types, which should
be thought of as an interaction which can act in both
a positive and a negative way. Juc contains the structural
information without interaction types, or colored edges. This
network will from now on be referred to as the uncolored
network. Conversely, the network represented by Jc will be
referred to as the colored network. Figure 3 shows how a small
artificial network consisting of only two reactions would be
transformed into both networks.

2.8. Method D: B-SSS. In a metabolic network, entries in the
Jacobian matrix represent interactions between metabolites.
In our analysis, we assume that all reaction rates follow the
Michaelis-Menten kinetic rate law:

v = x

x + Km
·kcat·[E], (7)

where Km is the Michaelis-Menten constant, [E] is enzyme
concentration and kcat represents the maximum number of
moles of substrate that the enzyme can convert to product
per unit time (see [22]).

Differentiating (7) gives

dv

dx
= kcat·[E]·Km(

x + Km
)2 . (8)

We are interested in the values of dv/dx in order to calculate
the matrix (∂v/∂x)|x0 . Subsequently, these can be sampled
from to generate matrix A (Section 2.7).

Values for Km and kcat are collected by parsing BRENDA,
whereas values for [E] are collected from Ghaemmaghami
et al. [23], which contains a list of concentrations for a
number of proteins of S. cerevisiae. Values for Km, kcat, and
[E] were selected as triplets only when (i) the three values
belong to the same protein; (ii) Km and kcat correspond to
the same substrate, and (iii) Km and kcat correspond to the
same conditions. Each triplet of values for Km, kcat and [E]
was entered 100 times in (8), each time using a value for
x uniformly picked from the range [1 × 10−5, 2 × 10−2]
moles per liter Henry et al. [24]. The result is a distribution
for dv/dx, of which each sample represents an entry in the
(∂v/∂x)|x0 matrix.
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R1: A + 2B→ C + 3D
R2: 4C + 3A→ 2B + E
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Figure 3: The artificial network consisting of the two reactions shown at the top left of this figure is used to illustrate how matrices S and
A are constructed. Also, an intermediate matrix Jt (not described in the main text) is shown, which is the result of the multiplication S·A.
Matrix Juc is constructed by setting all diagonal entries to zero and putting ones at the locations where there are only positive values in Jt.
Matrix Jc is constructed in a similar manner for the diagonal and positive entries. However, the entries of Jt consisting of only negative values
are set to 2, whereas the entries consisting of both positive and negative values are set to 3. A drawing of the resulting uncolored and colored
networks is shown at the bottom right.

Next, 1000 matrices Al, l ∈ [1, 1000] are generated, by
assigning all nonzero entries in A a value randomly sampled
from the dv/dx distribution. Using these Als, 1000 matrices
Jl are generated

Jl = S·Al, l ∈ [1, 1000]. (9)

Finally, all nonzero entries in the 1000 Jacobians thus
generated are distributed over vectors jpos, jneg, jcom, and
jdiag, representing positive, negative, combined, or diagonal
entries of a Jacobian matrix, respectively, such that jpos =
{J li, j | Jci, j = 1}, jneg = {J li, j | Jci, j = 2}, jcom = {J li, j | Jci, j = 3},
and jdiag = {J li, j | i = j}. These four vectors together will
from now on be referred to as the BRENDA distribution. This
distribution consists of a large amount of small values with
high variation and a few larger values (see the histograms of
dv/dx and log(dv/dx) in Supplementary Figures 14(c) and
14(d)).

In Section 2.5, it was discussed how the method
described in Prill et al. [5] determines the SSS of a motif.
It instantiates Jacobians by sampling values from uniform
distributions and entering them in the adjacency matrix. We
instead sample from the BRENDA distribution, which seems
biologically more relevant. This is done by assigning diagonal
values, nondiagonal values of 1, nondiagonal values of 2, and

nondiagonal values of 3 in the adjacency matrix of a motif a
value sampled from jdiag, jpos, jneg, or jcom, respectively. The
remaining part of the procedure is the same as described in
Section 2.5, yielding a new structural stability score based on
the BRENDA distribution. This new SSS and the SSS of Prill
et al. [5] will from now on be distinguished as the B-SSS (for
BRENDA) and the P-SSS (for Prill), respectively.

2.9. Method E: Currency Metabolites. Currency metabolites
are chemicals that participate in a reaction but are not the
chemicals of interest in that reaction. Their role is mostly
to transfer energy, OH-groups or H-atoms. In [10], it was
observed that these currency metabolites greatly influence
the topology of a metabolic network (see Supplementary
Figure 10). As it is likely that the way in which currency
metabolites are treated also influences motif frequencies,
they are removed from our network in order to assess their
impact on motif enrichment.

However, care must be taken in deciding which metabo-
lites to remove. Some authors have determined metabolites
that frequently operate as cofactors [10, 25] by hand, whereas
in [26] a method was developed where currency metabolites
could be automatically identified based on the modularity
of the network. Using the lists of currency metabolites from
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[10, 25, 26] as a starting point, currency metabolites are
removed from our network in two steps. First we defined
a set of metabolites which are always currency metabolites.
These are removed from our network completely, that is, the
rows of the stoichiometric matrix S corresponding to these
metabolites are deleted (Supplementary Table 6).

There are also chemicals which are currency metabolites
in one reaction but not in another. We observed that these
metabolites usually come in pairs (Supplementary Table
7). We removed these pairs in all reactions in which one
metabolite is a substrate, whereas the other is a product.
The reactions that consisted only of these pairs of currency
metabolites (Supplementary Table 8) were kept however,
since these are the reactions in which the currency metabo-
lites are created.

2.10. Method F: Enzymatic Regulation

2.10.1. Preprocessing. Recall from Section 2.1.3 that our
microarray data consists of the expression of 9335 genes over
165 experiments using three different ways of normalization
(Table 3). We selected only genes known to regulate reactions
in our network, leaving us with 902 measurements per
experiment. It appeared that some experiments structurally
showed higher expression values for all genes. We exclude
these experiments from our data because in subsequent
sections, we normalize gene expression by dividing by
their maximal expression over all experiments. The average
number of genes having their maximum expression level in a
particular experiment is 5.4, with a standard deviation of 8.9
(see the histogram in Supplementary Figure 14(f)).

All experiments that had a value higher than 5.4 +
8.9 = 14.3 were deleted from the compendium, leaving us
with 154 experiments. After deletion of these experiments,
53 different conditions remained. In order to avoid a bias
toward setups that occurred more frequently than others,
we averaged the expressions of all experiments belonging to
the same setup, resulting in 53 expression values per gene.
As described in Section 2.1.3, our microarray data consists
of three types of values: absolute expression using RMA and
MAS normalization, and detection P-values.

2.10.2. MAS and RMA. We incorporate the method as
described in [27], in which we assume that every gene
is expressed in at least one condition. We look for the
maximum value of a gene over all conditions and consider
that a value for which the gene is expressed. Subsequently,
we divide all other expressions of the same gene by this
maximum value, thus normalizing to a range between 0 and
1. In conditions where this normalized value is close to zero,
we assume that the gene is not expressed. This can be done
for all genes and by defining a threshold τ1, lists can be
created for all conditions, containing all genes that have a
normalized expression below τ1.

2.10.3. Detection of P-Value. The smaller the P-value, the
more likely it is that the particular gene is expressed in a
particular condition. We define a threshold, τ2, but here we

create lists for all conditions containing genes with a P-value
above this threshold.

2.10.4. Removal of Reactions. The generated lists contain the
gene names corresponding to reactions in our metabolic
network. The columns of stoichiometric matrix S corre-
sponding to these reactions are removed and thus the
metabolite interaction that would have resulted from these
reactions will not appear in matrix Jc, which represents the
colored network. After this processing, we end up with 53
different stoichiometric matrices for each method-threshold
combination. Now the analysis continues as usual; for each
stoichiometric matrix, a motif enrichment analysis is per-
formed and the NZS-profiles over all conditions are averaged
for every method-threshold combination, providing us with
results that can be directly compared to those obtained from
the full model in which no reactions were deleted.

3. Results and Discussion

3.1. Results of the Baseline Method Differ across Networks.
Figure 4(a) shows a representative result presented in [5] (an
overview of all their results is given in Supplementary Figure
14(a)). The x-axis shows the motifs, and the y-axis shows
both the SSS and the NZS. The motifs are divided into density
classes, groups of motifs having an equal number of edges.
In the case of 3-node motifs, the number of edges ranges
from 2 to 6, yielding 5 density classes. For each figure, the
Correlation between NZS and SSS (CNS) is given, which is
a quantitative measure for the enrichment of structurally
stable motifs. When the CNS is high (close to 1), stable
motifs are enriched, when it is low (close to −1) unstable
motifs are enriched. In [5], a descending stairs-like behavior
was observed, that is, within each density class, the highest
scoring motifs appear on the left, the lower scoring motifs
on the right. This means that within each density class there
is a positive correlation between the SSS and the NZS of a
network motif, which led the authors of [5] to the conclusion
that evolution has selected for stable motifs.

When the same method (method A from Table 1) is
applied on our metabolic network, we obtain the results
in Figure 4(b), which do not correspond to those in [5];
structurally stable motifs are not enriched. Only two motifs
are highly enriched, 78 and 110, which both have an infinite
NZS in Figure 4(a). This results from a division by zero in
the calculation of the NZS, as it is discussed in detail in
Section 2. The motif most enriched in Figure 4(a), motif
6, is not over-represented at all in our network. Motif 78
consists of two bidirectional edges (Supplementary Figure
9(a)). The large difference in enrichment scores for this motif
stems from the fact that the Erdös-Rényi (ER) randomisation
method used here produces very few bidirectional edges
(Section 2.6). Motif 78 was generated only a few times in
the random networks for our metabolic network, resulting
in a low standard deviation in the equation calculating
the NZS (Equation (4) in Section 2.4), and thus a high
enrichment. In the random networks of the example taken
from [5], the motif was not generated at all, resulting in an
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Figure 4: Relation between stability (measured by the SSS) and motif enrichment (measured by Normalized Z-Score (NZS)). Motifs are first
sorted according to density classes (separated by red dashed lines), groups of motifs having an equal number of edges. Inside each density
class, motifs are sorted by descending SSS. The first class consists of motifs with 2 edges, the last class of the fully connected motif with 6
edges (see Supplementary Figure 9(a) for the 13 motifs). Motifs that are infinitely enriched, resulting from a division by zero in (4), are
represented by a red diamond at y = 0. Where neither a green bar nor a red diamond can be seen, the NZS is very close to zero. The title
of each figure shows the Correlation between NZS and SSS (CNS), a quantitative measure for the enrichment of structurally stable motifs.
(a) Example of a result from [5], organism: S. cerevisiae. (b) Method A from Table 1 on the metabolic network of [11]. (c) Method B from
Table 1 on the metabolic network of [11].

infinite enrichment, indicated by the red diamond. Motif
238, consisting of even more bidirectional edges, is never
generated and is thus infinitely enriched in both networks.
Finally, note that motif 78 is not the most stable motifs in its
density class.

To summarize, Figures 4(a) and 4(b) show that when
applying the baseline method of [5] on a transcriptional
regulatory network and a metabolic network (both of S.
cerevisiae), very different results are obtained. It is likely that
this difference is caused by the method used for generating
random networks. Therefore, the influence of the null model
on our analysis is inspected in Section 3.2. Furthermore,
there is no stairs-like behavior in our results, leaving us

with little evidence for the central hypothesis given at the
beginning of this paper.

3.2. The Choice of Null Model Greatly Influences Motif
Enrichment Results. If we change the null model from the
ER-method to the switching method (Section 2.6), we obtain
the results shown in Figure 4(c). It is clear that the choice
of randomization method has considerable influence on the
results of our metabolic network. The top scoring motif in
Figure 4(b), motif 78, now has the lowest NZS, caused by
a high frequency in the random networks. Motif 238 has
a quite high NZS, but no longer infinite as in Figure 4(b).
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These observations indicate that the switching method has
generated more bidirectional edges than the ER method, as
expected.

The top scoring motif in the new results is now motif
46. This is the motif with the highest SSS of its density class.
However, as this is the only motif for which this is the case,
we cannot conclude that the structural stability of network
motifs has driven the evolution of our metabolic network.
We have also performed method B (Table 1) on some of
the data of [5], which led to similar results (Supplementary
Figure 13).

In summary, by replacing the ER randomization method
by the switching method, we obtained results for the
metabolic network which are almost completely opposite
to the original ones, that is, over-represented motifs are
now under-represented and vice versa. The hypothesis that
structurally stable motifs are enriched cannot be confirmed
yet.

3.3. Colored Edges Give a More Detailed Picture of Motif
Enrichment. The previous results were based on the 13 pos-
sible 3-node motifs of the uncolored model Juc (Section 2.7),
in which interaction types were not taken into account. From
this section on, we use the colored model Jc, extending the
uncolored model by assigning each edge a label of 1, 2, or
3, indicating a positive, negative, or combined interaction
(Section 2.7). When we bring these interaction types into
use, the NZS profiles change in the sense that we now
have NZS for 97 motifs instead of only 13. As the results
in [5] only contain NZS profiles for 13 motifs, the results
can no longer be compared directly. However, a similar
plot (NZS versus SSS of motifs divided over density classes)
can still be created (see Figure 5(a)). A number of density
classes show some correlation between NZS and SSS. For
instance, inside classes 3 and 5 the over-represented motifs
generally appear on the left, whereas the under-represented
ones appear on the right. However, the other classes do not
show this trend, leaving us with little proof for the central
hypothesis.

3.4. Using Biologically Plausible Interaction Strengths Leads
to Less Variation in Results. The observation that sampling
interaction strengths from a uniform distribution does not
correspond well to modeling biological interaction strengths
calls for a more natural way to sample edges in our network.
In Section 2.8 we show how we build a distribution which is
biologically more relevant for our metabolic network. Using
values derived from the BRENDA database, a new structural
stability score, called the B-SSS, is constructed (see the
histograms of the BRENDA distribution in Supplementary
Figures 14(c) and 14(d)).

Figures 6(a) and 6(b) compare the SSS as proposed in
[5], P-SSS, and the B-SSS. It can be seen that there is quite
some difference between the two scores. Another observation
is that the B-SSS never becomes 1, that is, according to this
SSS there are no motifs that are always stable, no matter the
interaction strength. This is in contrast to the P-SSS, where
motifs 6, 12, 36, and 38 are always stable.

Figures 6(c) and 6(d) compare the SSS profiles for the
colored and the uncolored model as described in Section 2.7.
It can be observed that the difference between the B-SSSes for
the colored and the uncolored model is smaller than for the
P-SSS. The colored B-SSS stays close to the uncolored B-SSS,
whereas the colored P-SSS oscillates around the uncolored
P-SSS. Note that the black dashed lines define regions
consisting of motifs having adjacency matrices with the same
nonzero entries. The signs of these entries differ however.
From these results we can conclude that when the B-SSS is
used, the sign of an edge is less important in determining
stability than when the P-SSS is used. It could be that the
uniform distribution used in the P-SSS generates Jacobians
that are not biologically plausible, whereas the BRENDA
distribution, which consists of interaction values derived
from a database of measured values, does not. So motifs are
less sensitive to changes in the signs of their interactions than
the P-SSS suggests.

The main observation is that the P-SSS has a wider
range than the B-SSS. It can be argued that this range is an
artefact of the uniform distribution from which interactions
are sampled and that the B-SSS limits the stability of the
motifs to a smaller range.

The relatively small influence of the change of SSS on the
enrichment analysis can be seen when we compare Figures
5(a) and 5(b). The overall conclusions remain the same,
although zooming in on the last density class at the right of
Figure 5(b) shows that the NZS do show an increased stairs-
like behavior; the more stable motifs within the last density
class are over-represented.

3.5. Removing Currency Metabolites Significantly Changes
the Enrichment of Some Motifs. Currency metabolites are
removed by the method described in Section 2.9. Removing
currency metabolites has a large impact on the network
topology. In particular, the degree distribution in the reduced
network is not scale-free as in the complete network (see
Supplementary Figures 11(a) and 11(b)). Note that although
our reduced network is no longer scale-free, this has no
consequences for the use of the switching method for
random network generation. This method preserves the
precise degree distribution for any network and is thus not
biased towards a scale-free or any distribution.

Figure 7(a) shows the difference between the two sets
of NZS resulting from motif enrichment analysis on both
the full and the reduced network (see Supplementary Figure
14(e) for the separate NZS). The ordering of the motifs is
the same as in Figure 5(b). There is quite some difference
between the two scores. The most striking result is the high
negative peak on the right of Figure 7(a), corresponding to
the motif with adjacency matrix

A =
⎡
⎢⎣

0 2 2
2 0 2
2 2 0

⎤
⎥⎦ (10)

which is the fully connected motif consisting of only negative
interactions. The peak tells us that the probability of finding
this motif by chance as often as in the real reduced model
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(c) Method E (Table 1)

000
100
100

000
002
120

000
102
120

002
002
220

022
202
220

011
102
120

Motif ID

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

N
Z

S
an

d
SS

S

CNS = −0.12203

NZS
SSS
Zero NZS

(d) Method F (Table 1). RMA, τ = 0, 2

Figure 5: Results of using method C (a), D (b), E (c) and F (d) from Table 1. Note that in (c) and (d) a number of motifs have disappeared
from the real network, resulting in a zero NZS, depicted by the red diamonds.

is far lower than the probability of finding it in the real full
model. A schematic drawing of this observation is shown
in Figure 7(b). Apparently, when currency metabolites are
removed, the number of times this motif is generated in
randomized versions of the reduced network drops faster
than the frequency of this motif in the real reduced network.
This might stem from the fact that the probability of
generating this motif in random networks is dependent
only on the number of negative bidirectional edges in our
original network, whereas the frequency of the motif in the
original network is guided by the format of the reactions. Any
reaction with more than two substrates directly constructs
such motifs, see Table 4. Removing currency metabolites
decreases the overall number of substrates, thus significantly
reducing the number of reactions having more than two
substrates (Figure 8). As a result, the motif in (10) is not
constructed as much as in the full network. This causes

Table 4: This table shows for each of the numbers of substrates
involved in a single reaction (top row) how many fully connected
motifs consisting of only negative interactions as in (10) are created
in the network. One can see that removing substrates greatly
decreases the number of this motif in the real network.

Number of substrates 1 2 3 4 5 6 7 8 9

Number of motifs 0 0 1 4 10 20 35 56 84

the frequency of this motif in the reduced network to drop
significantly, whereas the random networks are not affected
by this “direct motif construction.”

Figure 5(c) shows the effect of removing currency
metabolites on our total NZS analysis. This figure should be
compared to Figure 5(b). All NZSes have shrunken towards
zero, both the positive and the negative ones. In the last
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Figure 6: (a) and (b) represent comparisons of the B-SSS and the P-SSS. In both plots, the SSSes are ranked according to descending P-SSS.
Note that the original P-SSS (for 13 motifs) cannot be compared directly to our B-SSS (for 97 motifs). We defined four SSSes: colored P-
SSS, uncolored P-SSS, colored B-SSS, and uncolored B-SSS. The uncolored P-SSS is the original SSS from [5], the colored B-SSS is the SSS
discussed in Section 2.8. The colored P-SSS is calculated by sampling positive, negative, and combined interactions from a U(0, 1),U(−1, 0),
and a U(−1, 1) distribution, respectively. The uncolored B-SSS is calculated by sampling each nonzero, nondiagonal entry and each diagonal
entry in the adjacency matrix of a motif from the jcom and jdiag distribution given in Section 2.8, respectively. Note that in (a) the B-SSS is
always higher than the P-SSS except for the first four motifs, which have a P-SSS of 1, that is, they are always stable, no matter the interaction
strengths. (b) shows the same behavior. The difference between the red and green lines is a measure for the change in structural stability for
each motif. Therefore, the fluctuation in the B-SSS tells us that some motifs are more affected by changing the distribution used to sample
from than others. (c) and (d) represent the effect of edge colors on the two SSSes. The 75 different motifs are sorted according to their ID.
The black dashed lines divide the x-axes into 13-motif segments. A segment contains all motifs which have the same ID, and thus structure,
but different edge colors, that is, interaction signs. The red lines are the SSS scores for the 97 different motifs, the blue line represents the
original SSS score for each motif id. (c) The red line is the B-SSS of the colored model (Jc, Section 2.7), the blue line is the B-SSS of the
uncolored model (Juc). (d) The red line is the P-SSS we have created for the colored model, the blue line is the original SSS from [5]. The red
line in (a) follows the blue line quite closely, whereas in (b) the similarity is smaller.

density class, the stairs-like behavior is somewhat lost again.
Although the highest peak is the most stable motif of its
density class, removing currency metabolites, does not allow
us to validate the central hypothesis.

3.6. Enzymatic Regulation Can Change a Metabolic Network’s
Building Blocks. We simulated enzymatic regulation using
the three methods described in Section 2.10. Figure 5(d)

shows the result of the motif enrichment analysis of the
network where reactions have been deleted according to the
RMA method with a threshold τ1 = 0.2. For the complete set
of 18 plots resulting from 6 thresholds for each 3 methods,
see Supplementary Figures 15–19 (these should be compared
to Figure 5(c)).

One can immediately see that the introduction of enzy-
matic regulation does not change the overall NZS-profiles
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Figure 7: (a) NZS of the full model minus NZS of the reduced model. Observe the large negative peak on the right of the plot, which belongs
to the motif with the adjacency matrix in (10). (b) Schematic drawing of the explanation for the large negative peak in (a). The y-axis is not
to scale. The values on the y-axis and the z-scores on the x-axis are the actual values as calculated by FANMOD.
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Figure 8: Number of reactions with a certain number of substrates
for both the full and the reduced network. Removing currency
metabolites causes the number of reactions having more than 2
substrates to drop significantly.

dramatically. For low τ1 and for high τ2, a lot of motifs that
were present in the real network of Figure 5(b) disappear
from the NZS-profile (see Supplementary Figures 15, 16, and
17). The network decreases significantly in size (using the
RMA method with τ1 = 0.6, 1017 reactions are discarded),
so there are less motifs in total. This causes very infrequent
motifs in the unregulated network to disappear first.

The peaks in the plots always remain at the same
positions. In the RMA plots, the two largest peaks switch for
some thresholds, but this is not a general trend; when the
threshold becomes very large, the peaks are found again at
the same places as in the unregulated network. The largest
peak of Figure 5(c) lowers quite dramatically even when
only a few reactions are discarded. This is caused by the

fact that reactions with a lot of substrates are switched
off earlier than reactions with only a few substrates (see
Supplementary Figure 12). This could stem from the fact that
reactions having a large number of substrates also need a
large number of enzymes to catalyze them. We have assumed
that the removal of any single one of these enzymes results
in the reaction being switched off. This could explain the fast
decrease in the large peak as it corresponds to fully connected
motifs with only negative edges which, as was discussed in
Section 3.5, are generated directly by reactions having more
than two substrates.

In conclusion, the overall NZS profiles remain unaltered
when enzymatic regulation is simulated. However, these
profiles have been averaged over all experimental conditions;
there may be some variation between different conditions
(Supplementary Figure 19 shows the motif-enrichment
analysis for some method-threshold combinations of the two
conditions that had the lowest correlation in NZS profiles).

4. Conclusion

We have attempted to bridge the gap between the available
topological information on a metabolic network and its
complex dynamical behavior, by using the method proposed
in [5]. The hypothesis is that structurally stable motifs
have driven network evolution, and that a large network
consisting of small stable building blocks will show stable
behavior itself. We have altered this method to make it better
suitable for analysis of metabolic networks, by changing the
null model for determining motif enrichment, that is, the
way of generating random networks; using interaction types;
putting a different distribution to determine the structural
stability of a motif into use; removing currency metabolites;
and finally by simulating enzymatic regulation.
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The first conclusion was that the choice of null model
in the method of [5] significantly influences the results of
the analysis. Based on the high number of infinite NZSes
obtained by using the Erdös-Rényi method, we conclude that
this method produces doubtful motif enrichment results due
to its too random distribution of edges in random networks.

We have shown that the SSS proposed in [5], based on
sampling interaction strengths from a uniform distribution,
can give a false indication of the stability of network
motifs in any network. We composed a biologically more
plausible distribution for metabolic networks, the BRENDA
distribution, and demonstrated that the SSSes constructed
from this distribution have a smaller range than those
constructed from a uniform one. Furthermore, using the
BRENDA distribution, there is less variation in structural
stability between motifs that have the same structure but
different interaction signs.

In addition, we have performed an extensive simulation
of enzymatic regulation, by removing reactions based on
gene expression data obtained by three different methods.
We have demonstrated that even averaged over a broad range
of different experimental setups influencing gene expression,
the motif enrichment profiles stay remarkably similar. This
could indicate that the “building blocks” available to a cell to
build its metabolic network from stay largely unaltered.

The main conclusion of this paper is that structurally
stable network motifs are not enriched in metabolic net-
works. Even after applying a number of adaptations to make
the method more suitable for metabolic networks, we were
not able to use the method proposed in [5] to show a
positive correlation between motif enrichment and stability
in metabolic networks. The measure we have devised to
quantify this correlation, the CNS, did not increase after
the various adaptations, indicating that stable motifs are
not enriched. In order to strengthen this conclusion, we
repeated our analysis using larger motifs (4 nodes) and
metabolic networks from other organisms (E. coli and H.
sapiens) with identical conclusions. The results can be found
in Supplementary Figure 20.

The extensions proposed in this paper are not exhaustive.
However, we do not believe that further extensions would
change the conclusions we reached in this paper. In fact,
the results of the different extensions are consistent (i.e.,
structurally stable motifs are not enriched in metabolic
networks), in spite of the fact that the topology of the
metabolic network can be drastically changed in different
ways.

The analysis proposed in this paper is statistical in
nature, and so is the method proposed in [5]. We are not
able to quantify the influence of the uncertainties of the
considered models on the presented results. However, we
believe that this work improves the method in [5], since we
have considered biologically meaningful parameter ranges,
whereas in [5], the parameters are drawn from uniform
distributions; and we have used the information available
about the interaction type and activity, whereas in [5], only
binary interaction information is taken into account.

We can conclude that, in terms of deriving stability
from structural properties, metabolic networks differ from

the types of biological networks studied in [5]. It may be
the case that metabolic networks indeed are less stable.
However, we have focused on local stability only, and as
measuring global stability is hard, this conclusion is not
easy to validate. Perhaps a different global measure, such as
monotonicity [28, 29], may give more insight into differences
between metabolic and other networks. A second and more
likely explanation is that metabolic networks differ in their
topology from other networks to the extent that the method
of analysis used based on motifs fails. This conclusion is
supported by the fact that the method in [5] was shown to
be sensitive to the choice of randomization; sensitivity to the
structure of the input network is likely.
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