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Distribution-free statistical tests offer clear advantages in situations where the exact unadjusted p-values are required as input for
multiple testing procedures. Such situations prevail when testing for differential expression of genes in microarray studies. The
Cramér-von Mises two-sample test, based on a certain L2-distance between two empirical distribution functions, is a distribution-
free test that has proven itself as a good choice. A numerical algorithm is available for computing quantiles of the sampling distri-
bution of the Cramér-von Mises test statistic in finite samples. However, the computation is very time- and space-consuming. An
L1 counterpart of the Cramér-von Mises test represents an appealing alternative. In this work, we present an efficient algorithm
for computing exact quantiles of the L1-distance test statistic. The performance and power of the L1-distance test are compared
with those of the Cramér-von Mises and two other classical tests, using both simulated data and a large set of microarray data on
childhood leukemia. The L1-distance test appears to be nearly as powerful as its L2 counterpart. The lower computational intensity
of the L1-distance test allows computation of exact quantiles of the null distribution for larger sample sizes than is possible for the
Cramér-von Mises test.
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1. INTRODUCTION

As larger sets of microarray gene expression data become
readily available, nonparametric methods for microarray
data analysis are beginning to be more appreciated (to name
a few, see [1–6]). This is attributable in part to serious con-
cerns about the widely invoked distributional assumptions,
such as log-normality of gene expression levels, in paramet-
ric inference from microarray data. It is well recognized that,
in general, when the assumption of normality is violated, the
normal theory-based statistical inference looses validity or
becomes highly inefficient in terms of power [7]. In partic-
ular, Student t test can perform very poorly under arbitrar-
ily small departures from normality [8]. Computer-assisted
permutation tests employing resampling techniques cannot
remedy this problem when the exact unadjusted p-values are
needed as input for multiple testing procedures. Indeed, the
small p-values required by procedures controlling the family-
wise error rate (FWER, see Dudoit et al. [9] for definition),

such as the Bonferroni or Holm methods, cannot be esti-
mated with sufficient accuracy by resampling, because the
required number of permutations is astronomical [10] and
cannot be accomplished with present-day hardware.

There are two properties of distribution-free methods
that hamper their wide use in microarray studies. First, they
are believed to have low power with small to moderate sam-
ple sizes, a property that is attributable to their discrete na-
ture. This common belief comes from computer simula-
tions conducted for normally distributed data under loca-
tion (shift) alternatives, conditions under which the t test is
known to be optimal. However, depending on the choice of
a test statistic, the power of a given distribution-free test may
be quite close to that of the t test even under such ideal (for
the t test) conditions, with the gap between the two methods
diminishing as the sample size increases. For example, the
Cramér-von Mises test appears to be quite competitive when
its power is assessed by simulating normally distributed log-
expression levels under location alternatives [4] and it can
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provide a substantial gain in power under some other types
of alternative hypotheses. Since one never knows the relevant
class of alternative hypotheses, the virtues of distribution-
free tests are clear when a pertinent test statistic is judi-
ciously chosen. The second problem with distribution-free
test statistics is that they all have an attainable maximum.
This property represents a serious obstacle to simultaneous
testing of multiple hypotheses in small sample studies be-
cause it may make the adjusted p-values too large to declare
even a single gene differentially expressed, even in the case
where the empirical distributions pertaining to the two phe-
notypes under comparison do not overlap for many genes
(see [3, 10]).

Both problems are alleviated by increasing the sample
size. Our experience suggests that the nonparametric infer-
ence based on distribution-free tests does not appear to be
stymied (because of the second property) in genome-wide
microarray studies when the number of subjects per group
is greater than 20. We are convinced that samples of such or
much larger sizes will be routinely used in microarray analy-
sis in the not-so-distant future.

The implementation of distribution-free tests in mi-
croarray studies is also hampered by the fact that efficient
numerical algorithms for computing p-values in finite sam-
ples are not readily available. The sampling distributions of
such statistics do not depend upon which distribution gen-
erated the observed data under the null hypothesis. How-
ever, explicit analytical formulas for these distributions have
been derived only in some special cases. Relevant asymptotic
results are of limited utility in microarray analysis, because
the accuracy of approximation in the tail region of the lim-
iting distribution (the region of very small p-values one is
interested in) is inevitably poor. Consider the example dis-
cussed in Section 3 of the present paper, where m = n = 43
and 12558 hypotheses are tested. For the Cramér-von Mises
statistic value equaling A = 2.2253921, the exact and asymp-
totic p-values are equal to 2.115× 10−6 and 3.994× 10−6, re-
spectively. The Bonferroni-adjusted p-values are, therefore,
equal to .02656 and .05015, respectively. Similarly, for the
statistic value equaling B = 2.1193889, the exact and asymp-
totic Bonferroni-adjusted p-values are .0493 and .0866, re-
spectively. As a result, all the genes with values of the test
statistic falling in the interval [B,A] will be declared differ-
entially expressed when using exact p-values, but they will
not be selected if asymptotic p-values are used. This exam-
ple shows that the development of universal numerical algo-
rithms for computing exact p-values has no sound alterna-
tive. Such an algorithm for the Cramér-von Mises test with
equal sample sizes was suggested by Burr [11]. While the pre-
decessor of Burr’s algorithm, which looked over all ordered
arrangements of the two samples under comparison, was ex-
ponential time in the sample sizes, the algorithm of Burr is
polynomial time [11]. However, the computation is still quite
time- and space-consuming, which limits its feasibility when
the sample size increases. What is needed is a distribution-
free test which is competitive with the Cramér-vonMises test
in terms of power and stability of gene selection, while be-
ing more computationally efficient. Such a test was proposed

by Schmid and Trede [12]. The test is based on a certain L1-
distance between two empirical distribution functions. No
explicit analytical expression is available for the sampling
distribution of the L1-distance statistic, but its exact quan-
tiles can be computed using a numerical algorithm described
in the present paper. This algorithm shares many common
features with the aforementioned algorithm of Burr for the
Cramér-von Mises test [11, 13] (see also Hájek and Šidák
[14]) and builds on the idea which was first explored by An-
derson in conjunction with the latter test [15]. The proper-
ties of the L1-distance test are studied below in applications
to real and simulated data.

2. METHODS

2.1. The L1-distance test and its relation to the
Cramér-vonMises (L2-distance) test

Consider the two independent samples x1, x2, . . . , xm and y1,
y2, . . . , yn from continuous distributions F(x) and G(x), re-
spectively; let Fm and Gn be their respective empirical distri-
bution functions. Two-sample statistical tests are designed to
test the null hypothesis H0: F(x) = G(x) for all x versus the
alternative F �= G.

The Cramér-von Mises statistic is defined as follows:

W2 = mn

(m + n)2

{ m∑
i=1

[
Fm
(
xi
)−Gn

(
xi
)]2

+
n∑
j=1

[
Fm
(
yj
)−Gn

(
yj
)]2}

.

(1)

This statistic and the test based on it (rejectingH0 if the value
of W2 is “too large”) were introduced by Anderson [15] as a
two-sample variant of the goodness-of-fit test of Cramér [16]
and von Mises [17].

Several authors tabulated the exact distribution ofW2 for
small sample sizes underH0 [11, 15, 18, 19].

The L1-variant of W2 introduced by Schmid and Trede
[12] is given by

W1 = (mn)1/2

(m + n)3/2

{ m∑
i=1

∣∣Fm(xi)−Gn
(
xi
)∣∣

+
n∑
j=1

∣∣Fm(yj)−Gn
(
yj
)∣∣}.

(2)

Let Hm+n be the empirical distribution function associ-
ated with the pooled sample of x1, x2, . . . , xm and y1, y2, . . . ,
yn. Then both statistics (1) and (2) can be represented simi-
larly in the form

Wp =
(

mn

m + n

)p/2 ∫∞
−∞

∣∣Fm(w)−Gn(w)
∣∣p

× dHm+n(w), p = 1, 2.

(3)

Statistics (3) have a simple meaning. Move the m + n
points x1, x2, . . . , xm and y1, y2, . . . , yn, without changing
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their mutual order, to new positions, which are 1/(m +
n), 2/(m + n), . . . , (m + n)/(m + n) = 1. Let {ξ1, . . . , ξm} and
{η1, . . . ,ηn} be two subsets of the set {1/(m + n), 2/(m +
n), . . . , 1} coming from the xi’s and yj ’s, respectively, and let
F∗m andG∗n be the corresponding empirical distribution func-
tions. Then Wp equals, up to a constant factor (depending
only on m, n, and p), the pth power of the Lp-distance be-
tween F∗m and G∗n . In particular, W1 is proportional to the
area of the region between the graphs of F∗m and G∗n .

The discrete statistic W1 has fewer possible values than
the Cramér-von Mises statistic W2, its atoms are generally
more “massive,” thus leading to a less powerful test. How-
ever, as evidenced by our simulations, the losses in power ap-
pear to be light and well compensated by substantial gains in
computational efficiency (see Section 3).

2.2. An algorithm for computing the distribution ofW1

The algorithm described below uses the idea utilized earlier
by Burr [11]. The formulas (12), (13), (14) on which the al-
gorithm is based are close to those by Hájek and Šidák [14,
pages 143-144].

Let G be a directed graph with set of vertices V(G) =
{( j, k) ∈ Z2 : 0 ≤ j ≤ m, 0 ≤ k ≤ n} and with all possible
edges of two types: from ( j, k) to ( j + 1, k) and from ( j, k) to
( j, k+1), so thatG has (m+1)(n+1) vertices and 2mn+(m+n)
edges.

A pair of samples x1, . . . , xm and y1, . . . , yn generates a
few objects: the set X of all xj ’s; the set Y of all yk’s; the
pooled and ordered sample z1, . . . , zm+n; the sequence hi :=
Fm(zi)−Gn(zi), i = 1, 2, . . . ,m+n (we also put h0 := 0); and,
finally, a path w = (w0,w1, . . . ,wm+n) in the graph G defined
as follows: w0 = (0, 0) and for i = 1, 2, . . . ,m + n,

wi =
⎧⎨
⎩
wi−1 + (1, 0) if zi ∈ X ,

wi−1 + (0, 1) if zi ∈ Y ,
(4)

so that w leads from (0, 0) to (m,n). The sequence (hi)m+n
i=0

satisfies equations h0 = 0 and

hi =

⎧⎪⎪⎨
⎪⎪⎩
hi−1 +

1
m

if zi ∈ X ,

hi−1 − 1
n

if zi ∈ Y ,
(5)

i = 1, 2, . . . ,m + n; it is, therefore, completely determined by
the pathw. More precisely, ifwi = ( j, k), then hi = j/m−k/n.
Note that under the null hypothesis (x1, . . . , xm and y1, . . . , yn
are independent samples from the same continuous distribu-
tion) all paths w in G from (0, 0) to (m,n) are equally likely.

The statisticW1 equals

(mn)1/2

(m + n)3/2

m+n∑
i=0

∣∣hi∣∣. (6)

Let L be the least common multiple of m and n; put u :=
L/m, v := L/n, and gi := Lhi, i = 0, 1, . . . ,m + n, so that all gi
belong to Z andW1 equals (mn)1/2(m + n)−3/2L−1η, where

η :=
m+n∑
i=0

∣∣gi∣∣. (7)

Finding the null distribution of W1 is, therefore, equivalent
to finding that of η. If we introduce a function H on V(G),
putting

H( j, k) := | ju− kv| (8)

(a quantity that equals, up to a constant factor, the Eu-
clidean distance in R2 from ( j, k) to the line segment that
connects (0, 0) and (m,n)), then the value of η on the path
w = (wi)m+n

i=0 equals

η(w) =
m+n∑
i=0

H
(
wi
)
. (9)

For any q = ( j, k) ∈ V(G), define the frequency function
N(q; s) ≡ N( j, k; s), s ∈ Z+ = {0, 1, 2, . . . }, as the number of

paths (wi)
j+k
i=0 from (0, 0) to ( j, k) in G, such that

j+k∑
i=0

H
(
wi
) = s. (10)

In the special case j = m, k = n, knowledge of this frequency
function yields the distribution of η(w), since

Pr
{
η(w) = s

} = N(m,n; s)
( ∑

s′≥0
N(m,n; s′)

)−1

= N(m,n; s)

(
m + n
m

)−1
.

(11)

The problem becomes to find the frequency function
N(m,n; s), s ≥ 0. This can be achieved by finding the fre-
quency functions N( j, k; s) for all pairs ( j, k) ∈ V(G), which
can be done recursively as follows.

First, assume k = 0. There is only one path (wi)
j
i=0

from (0, 0) to ( j, 0); the corresponding sum of H(wi) equals∑ j
l=0 lu = j( j + 1)u/2, so that

N( j, 0; s) =
⎧⎪⎨
⎪⎩
1 if s = j( j + 1)u

2
,

0 otherwise.
(12)

Similarly,

N(0, k; s) =
⎧⎪⎨
⎪⎩
1, if s = k(k + 1)v

2
,

0, otherwise.
(13)

Furthermore, if j, k > 0, then for every path (wi)
j+k
i=0 from

(0, 0) to ( j, k), we have either wi−1 = ( j − 1, k) or wi−1 =
( j, k − 1), so that

N( j, k; s) = N
(
j − 1, k; s−H( j, k)

)
+N

(
j, k − 1; s−H( j, k)

)
= N

(
j − 1, k; s− | ju− kv|)

+N
(
j, k − 1; s− | ju− kv|).

(14)



4 EURASIP Journal on Bioinformatics and Systems Biology

Table 1: CPU time used for finding the distribution function forW1 and its L2-counterpartW2 under the null hypothesisH0. The CPU time
was measured in units of 10−3 seconds. The computing time is too small to be observable form < 40 if n = m and form < 10 if n = m + 1.

m = n W1 W2 m = n W1 W2 m, n W1 W2

40 80 1000 100 3120 160 930 10, 11 10 10

50 190 3210 110 4690 282 000 20, 21 120 1190

60 400 9290 120 6790 476 170 30, 31 1050 23 630

70 750 21 940 130 9800 774 070 40, 41 5920 193 250

80 1270 45 980 140 13 950 1 212 940 50, 51 21 750 833 790

90 2050 87 580 150 18 890 1 792 010 60, 61 63 080 > 231 · 10−3

(Note that the right-hand side equals 0 if s < | ju− kv|.) The
recursive formula (14) and the boundary conditions (12),
(13) allow one to compute the frequency functionsN( j, k; s),
s ≥ 0, in the lexicographic (dictionary) order of pairs ( j, k).

Here are some remarks on the computer implementa-
tion of the algorithm. First of all, every function N( j, k; s)
vanishes if s ≥ Rm,n := m(m + 1)u/2 + n(n + 1)v/2 + 1 =
L(m + n + 2)/2 + 1, so that no more than Rm,n values should
be stored for every pair ( j, k) ∈ V(G).

There are |V(G)| = (m + 1)(n + 1) such frequency func-
tions, but all of them do not need to be stored simultane-
ously. Once such functionsN( j, k; s) have been computed for
j = j∗(1 ≤ j∗ ≤ m) and all k = 0, 1, . . . ,n, the functions
with 0 ≤ j < j∗ are not needed any more, and the memory
they occupy can be freed. Therefore, at any time, we need
to store such functions for only two neighboring values of j.
For large m, n, the required memory M is, therefore, of or-
der L(m + n)n, reorganizing the computation appropriately,
with the use of the symmetry with respect tom and n, we can
improve the estimate to

M = O
(
L(m + n)min(m,n)

) = O(Lmn). (15)

We remind the reader that L is the least common multiple
of m and n, and the symbol O(X), for large X , means any
quantity Y that satisfies an inequality |Y | < AX + B with
some fixed constants A and B.

Assuming thatm ≤ n, the two extreme cases arem = n−
1 and m = n, where (15) gives M = O(n4) and M = O(n3),
respectively.

The time (or, more precisely, the number of computer
operations), T , required for the computation, satisfies the in-
equality T ≤ C(m+1)(n+1)L(m+n+2)/2 with a certain con-
stant C. (Indeed, we need to calculate each value N( j, k; s),
which is a sum of at most two previously computed values.)
This implies that

T = O
(
mnLmax(m,n)

)
. (16)

Assuming, as above, that m ≤ n, we obtain the general esti-
mate T = O(n5), while in the special case m = n, we have
T = O(n4).

These estimates should be compared with those for the
corresponding algorithm for computing the distribution of
the Cramér-von Mises statistic. The estimated number of
stored values N( j, k; s) for each pair ( j, k) is approximately

L times more than for the algorithm described above. This
multiplies both required memory and time by a factor of L,
which, assuming m ≤ n, may vary from n (the case m = n)
to n(n− 1) (the casem = n− 1).

The exact quantiles of the sampling distribution of W1

resulted from the above algorithm are in complete agreement
with the corresponding quantiles given by Schmid and Trede
[12] for small and moderate balanced samples.

3. RESULTS

3.1. Computational efficiency of the algorithm

We compared the computational efficiency of the proposed
algorithm for computing the null distribution of the L1-
distance test statistic W1 to that for the Cramér-von Mises
test statistic W2. We studied the time requirements of both
algorithms, as well as their respective maximum sample sizes
for which the computation is still feasible. All our compu-
tation experiments were carried out on a UNIX workstation
(Sunfire V480) with 16.3GB RAM, 4 × 8.0MB Cache, and
4× 1200MHz CPU.

Table 1 presents the time it takes the computer to find
the distribution function of each of the two statisticsW1 and
W2. (More precisely, the table shows the CPU time, i.e., the
processor time, needed for the computation.) For simplicity
of representation of the results, only two extreme cases with
n = m and n = m + 1 are shown. For each test, the com-
puting time increases as a power of the sample size. How-
ever, the difference in the corresponding exponents leads to
a significant difference in the computing time. Because of
the design of the algorithm presented in Section 2.2, the case
n = m+ 1 is the least favorable so that the difference in com-
puting time for the two methods becomes evident even in
small samples. For n = m = 40, the computing time for
the Cramér-von Mises test is about 12 times longer than that
for the L1-distance test. The divergence is more dramatic for
larger sample sizes. For n = m = 150, the computing time
increases to almost half an hour for the Cramér-von Mises
test, while it is less than 20 seconds for the L1-distance test.

The difference in memory requirements leads to a differ-
ence in the maximum sample sizes for which the computa-
tion is still feasible. With the above-mentioned computer, in
the case of equal sample sizes (m = n), the maximum sample
sizes are approximately 800 and 200 for the test statisticsW1

andW2, respectively.
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Figure 1: Power curves for t, Kolmogorov-Smirnov (KS), L1-distance, and Cramér-von Mises tests against location (shift) alternatives at
significance level 0.05. Samples were drawn from normal distributions with the same variance 1 but unequal means.

3.2. Power of the L1-distance test

To assess the power of the proposed test, we designed our
simulation study as follows.

(1) In each sample, data are generated from a normal dis-
tribution N(μ, σ2) with mean μ and variance σ2. In
the context of microarray data analysis, this design im-
plies that the original gene expression levels are log-
transformed.

(2) One of the two samples under comparison is gener-
ated from the distribution with μ = 0 and σ = 1. To
generate the other sample, either the parameter μ or
the parameter σ2 is set at different values keeping the
other parameter constant.

(3) The resultant pair of samples is used to compute the
observed values of the test statistics under study.

(4) Steps (1)–(3) are repeated 10 000 times. The number
of times when the null hypothesis gets rejected at a sig-
nificance level of 0.05 is divided by 10 000 and plotted
as a function of each parameter.

Under the above-described design, we compared the
power of the L1-distance test with that of the Cramér-von
Mises, Kolmogorov-Smirnov, and Student t tests. Figure 1
presents the power curves for the four tests at significance
level α = 0.05 under the location (shift) alternatives. As ex-
pected, the t test outperforms the other three tests because of
its optimality under these conditions. For the balanced case
m = n = 20 and the unbalanced casem = 20 and n = 21, the
gap between the power curves for the Cramér-von Mises and

L1-distance tests is almost undetectable. The Kolmogorov-
Smirnov test is the least powerful among the four tests in
both cases.

Figure 2 presents the results of testing differences in the
variance. In this simulation study, the samples were drawn
from two normal distributions with equal means (μ1 = μ2 =
0) but different variances. It comes as no surprise that the
power curve for the t test is practically flat, indicating virtu-
ally no power against this type of alternatives. For the cases
m = n = 20 andm = 20, n = 21, the simulated power curves
for the Cramér-von Mises and L1-distance tests agree closely.
Both tests outperform the Kolmogorov-Smirnov test.

Figure 3 shows the power curves for the four tests at the
same significance level with the samples drawn from expo-
nential distributions. In this case, the power curve is plot-
ted as a function of the ratio of the means of the two expo-
nential distributions under comparison. The Kolmogorov-
Smirnov is the least powerful among the four tests while the
L1-distance test and the Cramér-von Mises test are highly
competitive with each other. The t test outperforms all the
three nonparametric tests. However, the gain in power rel-
ative to both versions of the Cramér-von Mises test is quite
small.

3.3. Analysis of biological data

For the purposes of this study, we used the publicly avail-
able St. Jude Children’s Research Hospital (SJCRH) database
on childhood leukemia (http://www.stjuderesearch.org/data/
ALL1/). The whole SJCRH database contains gene expression

http://www.stjuderesearch.org/data/ALL1/
http://www.stjuderesearch.org/data/ALL1/
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Figure 2: Power curves for t, Kolmogorov-Smirnov (KS), L1-distance and Cramér-von Mises tests at significance level 0.05. Samples were
drawn from normal distributions with equal means but different variances.

data on 335 subjects, each represented by a separate array
(Affymetrix, Santa Clara, Calif) reporting measurements on
the same set of p = 12 558 genes. We selected two groups of
patients with hyperdiploid (Hyperdip) and T-cell acute lym-
phoblastic leukemia (TALL), respectively. The groups were
balanced to include 43 patients in each group. The microar-
ray data were background corrected and normalized using
the Bioconductor RMA software. The raw (background cor-
rected but not normalized) expression data were generated
by the output of the RMA procedure when choosing the fol-
lowing option: normalization = false. The L1-distance test was
compared with Student t and the Cramér-von Mises tests in
this application. The three tests were applied to select dif-
ferentially expressed genes by testing two-sample hypotheses
with the Hyperdip and TALL data. The FWERwas controlled
by resorting to either the Bonferroni or the Westfall-Young
method.

The stability of gene selection was assessed by resam-
pling as described in [4]. We used a subsampling variant
of the delete-d-out jackknife method (with d = 7) for es-
timation of the variance of the number of selected genes
[20]. This method is technically equivalent to the leave-d-out
cross-validation technique. The general recommendation is
to leave out more than d = √

n but much fewer than the
available n arrays (see [20, 21]). We followed this recommen-
dation when selecting d = 7 and checked the results obtained
with slightly larger values of d. The results were largely sim-
ilar. For the Bonferroni adjustment, the number of subsam-
ples was equal to 1000, while for the Westfall-Young step-
down permutation algorithm, we used only 200 subsamples

because the latter procedure is much more time-consuming.
We used 10 000 permutations to estimate adjusted p-values
with the Westfall-Young algorithm.

Tables 2 and 3 present the numbers of genes selected by
the three tests combined with the Bonferroni adjustment or
the Westfall-Young algorithm for normalized and raw data.
The tables also present the mean numbers of genes selected
across the leave-7-out subsamples and their jackknife stan-
dard deviations (in parentheses). The t test appears to be the
most conservative one among the three tests in this particular
analysis. The results obtained by the Cramér-von Mises test
and its L1-variant agree quite closely. This is especially true
for the Westfall-Young method. With the Bonferroni adjust-
ment, the Cramér-von Mises test appears to be slightly more
conservative than the L1-distance test in terms of the mean
(over subsamples) number of selected genes. The stability of
gene selection appears to be similar for the three tests.

4. DISCUSSION

The Cramér-von Mises nonparametric test has received
much attention in the literature. The bulk of theoretical
work in this field has been focused on the Cramér-von Mises
goodness-of-fit test [22, 23]. The two-sample Cramér-von
Mises test is known to be powerful in situations where the
two distributions under comparison have dissimilar shapes
[24]. This test was considered by Anderson [15], Burr [18],
and Zajta and Pandikow [19]. Among other things, some
limited tables of quantiles for the two-sample Cramér-von
Mises test were presented in these works. The tables were
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Figure 3: Power curves for t, Kolmogorov-Smirnov (KS), L1-distance and Cramér-von Mises tests at significance level α = 0.05. Samples
were drawn from exponential distributions with different means. X-axis is the ratio of the means of the two exponential distributions from
which the samples were drawn.

Table 2: Numbers of genes selected by L1-distance test, Cramér-von
Mises test, and t test combined with Bonferroni adjustment. The
family-wise error rate was controlled at the level 0.05. The numbers
in parentheses are jacknife standard deviations.

Statistical test L1 test L2 test t test

Normalized data

Original sample 1029 1031 951

Mean (d = 7) 1371(153) 1092(134) 779(98)

Raw data

Original sample 516 545 458

Mean (d = 7) 704(317) 572(219) 388(141)

generated by a simple but extremely time-consuming (ex-
ponential time) algorithm looking over all ordered arrange-
ments of the two samples and treating them (under the null
hypothesis) as equally likely. Burr [11] proposed a much
more efficient polynomial time algorithm for computing
such quantiles. His algorithm was designed for the case of
equal sample sizes. The basic idea behind Burr’s algorithm
was extended to arbitrary sample sizes by Hájek and Šidák
[14] and was later implemented in a numerical algorithm by
Xiao et al. [13]. However, the computation is still quite time-
and space-consuming.

Schmid and Trede [12] proposed a new distribution-free
test for the two-sample problem, namely, an L1-variant of the
Cramér-von Mises test [12]. They also generated limited ta-
bles of quantiles for that test (in the case of equal sample
sizes), using a simple exponential time algorithm based on

Table 3: Numbers of genes selected by L1-distance test, Cramér-von
Mises test, and t test combined with Westfall-Young algorithm. The
family-wise error rate was controlled at the level 0.05. The numbers
in parentheses are jacknife standard deviations.

Statistical test L1 test L2 test t test

Normalized data

Original sample 1091 1092 1058

Mean (d = 7) 882(122) 885(119) 876(109)

Raw data

Original sample 870 866 790

Mean (d = 7) 743(379) 752(325) 675(317)

rearrangements, and studied the power of this L1-distance
test in comparison with the Cramér-von Mises (L2-distance)
and some other tests. In another paper [25], Schmid and
Trede considered the utility of an L1-variant of the Cramér-
von Mises goodness-of-fit test.

The present paper further explores the L1-distance test.
We present a time- and space-efficient algorithm and soft-
ware for computing its exact quantiles. The polynomial time
algorithm is based on the idea of Burr [11] mentioned above
and uses formulas similar to those of Hájek and Šidák [14].
The sample sizes are not necessarily equal. The algorithm en-
ables an investigator to compute exact tail probabilities, no
matter how small they are. Using a standard design of power
studies, we have found, based on simulated data, that the L1-
distance two-sample test is almost as powerful as the original
Cramér-vonMises test based on the L2-distance between two
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empirical distribution functions. This observation is consis-
tent with the results of a simulation study by Schmid and
Trede [12]. The results of computer simulations reported in
Section 3.2 cannot be taken as evidence that the Cramér-
von Mises test is always superior, even if slightly, to the L1-
distance test in terms of power. It is conceivable that, under
real-world alternatives, the power of the L1-test may be even
higher than that of the Cramér-von Mises test. At the same
time, the L1-distance test is computationally much less in-
tensive than its L2 counterpart. In particular, this allows one
to compute exact quantiles for the L1 test with larger sample
sizes than for the L2 test. In an application to actual biological
data-both tests have generated lists of differentially expressed
genes having almost equal sizes.

In summary, we recommend the L1-variant of the
Cramér-von Mises test as a good alternative to the original
Cramér-von Mises test for selecting differentially expressed
genes in microarray studies.
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