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Abstract

Transcriptional regulation networks are often modeled as Boolean networks. We discuss certain properties of Boolean
functions (BFs), which are considered as important in such networks, namely, membership to the classes of unate or
canalizing functions. Of further interest is the average sensitivity (AS) of functions. In this article, we discuss several
algorithms to test the properties of interest. To test canalizing properties of functions, we apply spectral techniques,
which can also be used to characterize the AS of functions as well as the influences of variables in unate BFs. Further,
we provide and review upper and lower bounds on the AS of unate BFs based on the spectral representation. Finally,
we apply these methods to a transcriptional regulation network of Escherichia coli, which controls central parts of the
E. colimetabolism. We find that all functions are unate. Also the analysis of the AS of the network reveals an
exceptional robustness against transient fluctuations of the binary variables.a
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1 Introduction
Boolean modeling is often used to describe signal trans-
duction and regulatory networks [1-3]. Over the last years
random Boolean models received much attention to find
some generic properties that characterize regulatory net-
works. In addition to the study of topological features (e.g.,
[4]), the choice of Boolean functions in such networks is
an important question to consider. Many results indicate
the importance of functions with a low average sensitivity.
For example, it is well known that a low expected aver-
age sensitivity is a prerequisite for non-chaotic behavior
of random Boolean networks, e.g., [5,6]. Further, so called
canalizing functions have been conjectured to be charac-
teristic for biological networks [7]. These functions have
a stabilizing effect on the network dynamics [1] and many
functions occurring in (non-random) regulative networks
are canalizing [7].
In this work we follow a non-random approach to find

properties characterizing regulatory networks. Namely,
we focus on the properties of Boolean functions in a large
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scale Boolean regulatory network model. Our goal is also
to provide efficient algorithms to test these properties.
First, we consider the membership of the regulatory

functions to certain classes of functions. We first con-
sider unate functions, which are monotone in each of their
variables and were shown to be implied by a biochemical
model [2].
Next, we present a test using Fourier analysis to test

canalizing properties of functions. Canalizing functions
are used in signal processing for certain classes of filters
[8] and play an important role in random and regulatory
Boolean networks, as already mentioned. Interestingly, it
has been shown in [9] that a subclass of canalizing func-
tions, namely the nested canalizing functions, is identical
to the class of unate-cascade functions, a subclass of the
unate functions. The test presented in this work is inspired
by [10], where the so-called forcing transform was intro-
duced to test the membership of a function to the class
of canalizing functions. Here, we generalize this approach
to the Fourier transform, which is a more intuitive and
natural approach and furthermore some spectral proper-
ties of canalizing functions have already been investigated
in [11].

© 2013 Klotz et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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It is well known that the average sensitivity can be
directly obtained from the Fourier spectral coefficients.
Further, the Fourier transform turns out to be useful to
prove bounds on the average sensitivity. We derive an
upper bound for unate functions similar to known results
for monotone functions and recall a well-known lower
bound on the average sensitivity.
Finally, we apply our tests to a large-scale Booleanmodel

of the transcriptional network of Escherichia coli. We
extended the network model of the transcriptional net-
work of E. coli (Covert et al. [3]) by mapping genes to their
corresponding fluxes in the flux-balance model presented
by [12]. The network has a layered feed-forward structure
and shows characteristic topological features, such as a
long-tail like out-degree distribution.
Throughout this article we use Fourier analysis to inves-

tigate the mentioned properties. In particular we use
the concept of restricted functions. Therefore we derived
both-way relations between the Fourier coefficients of
a Boolean function and its restriction. A very general
one-way approach of this relation can be found in [13].
The remainder of this article is organized as follows:

In Section 2 we give a short introduction to Boolean
functions and networks, discuss some fundamentals of
Fourier analysis and investigate the spectra of restricted
functions. In Section 3 we discuss certain classes and
properties of Boolean functions and show efficient ways
to check these properties. We also introduce the aver-
age sensitivity and prove an upper bound on it for unate
functions. In Section 4 we finally introduce Boolean net-
works and apply our methods and tests to the regula-
tory network of E.coli. Some final remarks are given in
Section 5.

2 BFs
A BF f : {−1, 1}n → {−1, 1} maps n-ary binary input
tuples to a binary output. In general, not all variables of
a function f are relevant. A variable i is called relevant, if
there exits at least one argument x ∈ {−1, 1}n such that
f (x) �= f (x ⊕ ei) , where the argument x ⊕ ei is obtained
from x by changing its i-th entry. In the following, we
denote the number of relevant variables by k.
For the sake of simplicity we assume throughout this

article, that k = n , i.e., all variables are relevant, but note
that the expositions in Section 2.1 are valid in general. The
assignment of +1 and −1 chosen to represent the binary
in and outputs is somewhat arbitrary. One can interpret
the value −1 as “ON” or “TRUE” and +1 as “OFF” or
“FALSE”.

2.1 Fourier analysis
Here we will give a short introduction to the concepts of
Fourier analysis so far used in this article. Let us consider
x = (x1, x2, . . . , xN ) as an instance of a product distributed

random vector X = (X1,X2, . . . ,XN ) with probability
density function

PX(x) =
∏
i
PXi(xi).

Furthermore, let μi be the expected value of Xi , i.e.,
μi = E[Xi] and let σi =

√
1 − μ2

i be the standard
deviation of Xi . It can easily be seen that

PXi(ai) = 1 + ai · μi
2

. (1)

It is well known that any BF f can be expressed by the
following sum, called Fourier-expansion [14,15],

f (x) =
∑
U⊆[n]

f̂ (U) · �U(x), (2)

where [ n]= {1, 2, . . . , n} and

�U(x) =
∏
i∈U

xi − μi
σi

. (3)

ForU = ∅we define�∅(x) = 1 . The Fourier coefficients
f̂ (U) can be recovered by

f̂ (U) =
∑
x

PX(x) · f (x) · �U(x). (4)

Further, let A ⊂ U and Ā = U \ A, then
�U(x) = �A(x) · �Ā(x), (5)

which directly follows from the definition of �U
(Equation 3).
If the input variables Xi are uniformly distributed, i.e.,

μi = 0 and σi = 1 , Equation (3) reduces to

�U(x) =
∏
i∈U

xi,

and consequently, as PX(x) = 2−n for all x , Equation (4),
reduces to

f̂ (U) = 2−n
∑
x

f (x) ·
∏
i∈U

xi.

2.2 Restricted functions
A function is called restricted, if some of the input vari-
ables are set to constants, i.e., variables i ∈ K are set to a
constant xi = ai . Hence, the number of relevant variables
is reduced by |K| . First, we consider the case that only one
variable is restricted (K = {i} ). The function obtained in
this way is denoted as

f |xi=ai : {−1, 1}n−1 → {−1, 1}. (6)

The following lemma gives a relation between the Fou-
rier coefficients of the original function and its restriction.
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Proposition 1. Let the function f (x) be a function in n
variables. Consider the restricted function obtained by set-
ting xi = ai , further, let f̂ |xi=ai be denoted as f̂ai then

f̂ai(U) = f̂ (U) + �{i}(ai) · f̂ (U ∪ {i}) (7)

where U ⊆[ n] \{i} and �{i}(ai) = ai−μi
σi

.

Proof. Using Equation (4) we can rewrite (7) as

f̂ai(U) =
∑
x

PX(x)f (x) · �U(x)

+ �{i}(ai) ·
∑
x

PX(x)f (x) · �U∪{i}(x). (8)

By applying (5) and (3) we get

�U∪{i}(x) = �U(x) · �{i}(x) = �U(x) · xi − μi
σi

.

Hence, we can combine the two sums in (8) and obtain:

f̂ai(U) =
∑
x

(
PX(x)f (x) · �U(x) · �i

)
, (9)

where

�i =
(
1 + xi − μi

ai + μi

)
= ai + xi

ai + μi
,

due to �{i}(ai) = ai−μi
σi

= σi
ai+μi

.
Further, with ai = 1

ai and Equation (1) we get

�i =
{ 2

1+ai·μi
= 1

PXi (ai)
, if xi = ai

0 , if xi = −ai
.

Thus, the sum in Equation (9) can be simplified to

f̂ai(U) =
∑

x|xi=ai

PX(x)
PXi(ai)

· f (x) · �U(x)

and finally

f̂ai(U) =
∑

x|xi=ai

PX|xi(x|ai) · f (x) · �U(x),

which is the definition of the Fourier coefficients from
Equation (4) and concludes the proof.

A closely related property is given by the following
proposition. Please note that this result for uniform dis-
tributed input variables can also be retrieved using ([13],
Lemma 2.17).

Proposition 2. Let i ∈[ n] be fixed and denote f |xi=a
with fa . For any n-ary BF f,

f̂ (U) = 1 + μi
2

((
�{i}(+1)

)|U∩{i}| f̂+1(U \ {i})
)

+ 1 − μi
2

((
�{i}(−1)

)|U∩{i}| f̂−1(U \ {i})
)
.

Proof. Starting from the definition we obtain

f̂ (U) = E
[
f (X)�U(X)

]
= PXi(+1)E

[
f (X)�U(X)|Xi = +1 ]

+ PXi(−1)E
[
f (X)�U(X)|Xi = −1

]
= PXi(+1)�{i}(+1)E

[
f+1(X)�U\{i}(X)

]
+ PXi(−1)�{i}(−1)E

[
f−1(X)�U\{i}(X)

]
.

Note that for a = +1 or a = −1

E
[
fa(X)�U\{i}(X)

] = f̂a(U \ {i})
by definition, hence, the proposition follows from
Equation (1).

For the general case, that a BF is restricted to more
than one input, the following Corollary to Proposition 1
applies:

Corollary 1. Let f (x) be a BF and f̂ (U) its Fourier coef-
ficients. Furthermore, let K be a set containing the indices i
of the input variables xi , which are fixed to certain values
ai . The Fourier coefficients of the restricted function are
then given as

f̂ |K(U) =
∑
T⊆K

(
�T(a) · f̂ (U ∪ T)

)
,

where U contains the indices for the Fourier coefficients of
the restricted functions, i.e., U ⊆[ n] \K and a is a vector
containing all ai, i ∈ K .

3 Classes and properties of functions
In this section, we will present and discuss some classes
of BFs, namely unate and canalizing functions. Further,
we will discuss properties of functions characterizing their
robustness, like for example the AS.

3.1 Unate functions
A BF is unate if it is monotone (either increasing or
decreasing) in each of its variables, a precise definition will
be given below. The class of unate functions is a simple
extension of the class of monotone functions defined as
follows

Definition 1. A BF f : {−1, 1}n → {−1, 1} is
called monotone, if for each i ∈ {1, . . . , n} it holds that
f (x1, . . . , xi = −1, . . . , xn) ≤ f (x1, . . . , xi = 1, . . . , xn).

Now unate functions can be defined as follows.

Definition 2. A BF f is unate, if there exists a vector
a ∈ {−1, 1}n such that the function f (a1 · x1, . . . , an · xn)
is monotone.
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The class of unate functions is closed with respect to
restriction, since every restriction of a locally monotone
function yields again in a locally monotone function.
To test whether a function is unate or not it is sufficient

to use the definition, however, a necessary condition for a
function to be unate is given by the following proposition:

Proposition 3 (for example [16]). If f is a unate function,
then for each relevant variable i

f̂ ({i}) �= 0.

3.2 Canalizing functions
A BF is called canalizing, if there exists a canalizing vari-
able xi and a Boolean value ai ∈ {−1, 1} such that the
function

f |xi=ai(x) = bi, (10)

for all x1, . . . xi−1, xi+1 . . . xn , where bi ∈ {0, 1} is a con-
stant. If the restricted function, which is obtained by
setting xi = 1 − ai, is again canalizing and so on, the
function is called nested canalizing.
The following propositions give a relation between the

Fourier coefficients and the canalizing property.

Proposition 4. A BF f is canalizing in variable i, if for
any constants ai, bi ∈ {−1, 1} the Fourier coefficients f̂ (U)

fulfill the following condition.

f̂ (∅) + �{i}(ai) · f̂ ({i}) = bi, (11)

where μi is the expected value of xi and σi the correspond-
ing standard derivation.

Proof. Obviously, if a function is canalizing,
E[ f |xi=ai(x)]= bi holds. Since the expected value of a BF
can be expressed as E[ f (x)]= f̂ (∅) we obtain

E[ f |xi=ai(x)]= f̂ |xi=ai(∅).

Using Proposition 1, we get

E[ f |xi=ai(x)]= f̂ (∅) + �{i}(ai) · f̂ ({i}),
and the proposition follows from Equation (11).

A similar result namely the calculation of the Fourier
coefficients of a canalizing BF from the coefficients of the
restricted functions f̂ |xi=ai(U) is addressed in [11]. These
results can also be achieved using Proposition 2.
Proposition 4 can easily be extended for nested canaliz-

ing functions:

Proposition 5. Assume f (x) is canalizing for variables
xi = −ai, i ∈ K , then f (x) is canalizing for xj = aj, j /∈ K ,
i.e., E[ fK∪{j}(x)]= bj, if

∑
T⊆K∪{j}

(∏
i∈T

(
�{i}(ai)

) · f̂ (T)

)
= bj.

Proof. The proof follows from Corollary 1 and Proposi-
tion 4.

From Proposition 4 it is clear that the canalizing prop-
erty can be tested by considering all Fourier coefficients of
order one. Using the FastWalsh Transform [17] this test is
as fast as the one presented in [10], however, once we have
retrieved the spectra of a function, we can easily compute
other properties, such as the AS (see next section).

3.3 AS of functions
The AS [18] gives the influence of random disturbance at
the input on the output of a BF. This can be interpreted
as an indicator for the robustness of this BF and finally for
the whole Boolean network.
To define the as we first have to look at the sensitivity

sx(f ) of an input argument x ∈ {0, 1}n. It is defined as the
number of single bit-flips in x so that the output of the
function will change, i.e., sx(f ) is number of variables i for
which f (x) �= f (x⊕ ei). The AS as(f ) is the expected value
over all arguments x :

as(f ) = Ex[ sx(f )]. (12)

It is worth noting that the as depends on the distribution
of the input vector. For example, a function having a low
AS for the uniform distribution may have a large AS for
other distributions. In general, the AS can be as large as
the number of relevant variables k, i.e.,

0 ≤ as(f ) ≤ k.

Figure 1 explains the concepts defined above at an
example.

Figure 1 Sensitivities and AS of an exemplary BF. Each node
represents an argument of a BF with n = 3 variables, where + stands
for +1 and − represents a −1. A blank node indicates that the
corresponding output of the function is 1 while a shaded node
represents a −1. The sensitivity of a node is then the number of
neighbor-nodes with a different shading. The expected value of these
sensitivities is the AS.
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Alternatively, the AS can be defined using the notion of
influence. The influence Ii(f ) of a single input variable i on
the functions f is defined as

Ii(f ) = Prob[ f (X) �= f (X ⊕ ei)] . (13)

The AS can then be defined as the sum of all influences
[19]

as(f ) = Ex[ sx(f )] =
∑
i
Ii(f ). (14)

The influence Ii(f ) for a unate function f is directly
related to the corresponding Fourier coefficient:

Ii(f ) = |f̂ ({i})|
σi

, (15)

as it was shown for monotone functions in ([16], Lemma
4.5) and can easily be extended to unate functions. Note
that Equation (15) directly gives a proof for Proposition 3.
Hence, for unate functions we can write

as(f ) =
n∑

i=1

|f̂ ({i})|
σi

=
√√√√( n∑

i=1

|f̂ ({i})|
σi

)2

, (16)

and from the Cauchy-Schwarz inequality it follows that

as(f ) ≤
√√√√ n∑

i=1

(
|f̂ ({i})|

)2√√√√ n∑
i=1

(
1
σi

)2

≤
√(

1 − f̂ (∅)2
)√√√√ n∑

i=1

(
1
σi

)2
. (17)

Together with a lower bound as presented in [19,20]
and since 1 − f̂ (∅)2 = 1 − E[ f ]2 = Var(f ) we obtain the
following proposition.

Proposition 6. Let f be an unate BF with in-degree
n, further let σi be the standard derivation of the
i-th input, then the AS of f (as(f )) is bounded by

Var(f ) ≤ as(f ) ≤ √
Var(f )

√√√√ n∑
i=1

(
1
σi

)2
, (18)

where Var(f ) denotes the variance of f.

It can be shown that some functions get close to the
upper bound. Assuming uniform distribution the upper
bound in Equation (18) is smaller than

√
n. But it is well

known that the AS of the majority function behaves like
O(

√
n) (see for example [21]).

4 Application to a regulatory network of E. coli
In the previous sections, we only considered BFs. Now we
will focus on BNs. A synchronous BN of N nodes can be

described by a graph G = G(V ,E) with nodes V ⊆[N],
|V | = N , and edges E ⊆ V × V , and a set of ordered
BFs F = (f1, f2, . . . , fN ), where we also allow a dummy
function (see below). Each fi has ni = ki = in-deg(i) rel-
evant variables where in-deg(i) is the in-degree of node
i, i.e., the number of edges (j, i) with j ∈ V . In this
case a node j is called a controlling node of i. If a node
i has in-degree zero, the dummy function is attached
and we call it an in-node. Consequently, the number of
edges emerging from i is called the out-degree of node i.
Usually to each node a binary state variable is assigned,
i.e., for node i we assign xi(t) ∈ {−1,+1}. For in-nodes
the state can be set by some external process at some
time t0. The state of all other nodes at time t depend
on its BF and the states of all controlling nodes at time
instant t − 1.
In this article, we are only considering feed-forward

networks, i.e., networks without feedback loops. In such
feed-forward BNs, the set of nodes is partitioned in lay-
ers L1, L2, . . . , Ll . If a node i is an element of layer Lh all
controlling nodes are element of layers Lm with m < h.
The first (highest) layer L1 consists of the input nodes
(in-nodes), while the lowest layer Ll consists of the out-
put nodes (out-nodes). In Figure 2 a sample network
is depicted.

Figure 2 Example of a layered feed-forward Boolean network.
The picture shows an example network. The upper layer (in red)
consists of the inputs. These are fed forward through the middle
layers (representing the regulation of the genes, in green) to the
lowest layer. This layer is the output of the network (in blue). In our
case it represents the fluxes of the metabolism.
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4.1 Structural properties
We applied the tests described in the previous sections
to the regulatory network of E. coli [3]. The model pro-
vides Boolean formulas that describe how environmental
conditions act on gene expression via a transcriptional
regulatory network. We extended this network by the
mapping of the genes to their corresponding fluxes in
the flux-balance model [12]. The network as described in
the literature contains functions with irrelevant variables,
respectively, redundant edges, which are removed. A list
of the affected nodes and the removed edges can be found
in the Additional file 1.
The resulting network has a total of N = 3915 nodes

and |E| = 4874 edges, where 1, 386 of these nodes are in
layer L1, i.e., are inputs, hence, 2, 529 nodes have a non-
dummy function attached. The in-degree and out-degree
distributions can be found in Figures 3 and 4. The average
in-degree is 1.92724. The out-degree distribution shows a
typical long tail behavior [4].
We found that all functions attached to the nodes are

unate. Furthermore 2499 functions (98.8% ) are canalizing
An overview of the functions, which are not canalizing,
can be found in the Additional file 1.

4.2 Robustness
To evaluate the robustness of the network we assume in
general that the state of nodes can be described by binary
random variables. In a first step we assumed that each ran-
dom variable of each nodes is uniformly distributed. This
implies that we consider each node independently, i.e., the
topology of the network is ignored. We calculated the AS
for all functions in the network. In Figure 5, the resulting
AS is plotted versus the bias, which is the probability that
the output of the function equals one (a similar analysis

Figure 3 In-degree distribution of the investigated network ([3]
extended by [12]).

Figure 4 Out-degree distribution of the investigated network
([3] extended by [12]).

appears in [22]). Each color represents a BF with a cer-
tain in-degree n. We also included the lower bond and two
exemplary upper bounds for n = 5 and n = 8 (Equation
(18)). For increasing n the upper bounds will grow, i.e., the
bound will move further to the right.
Obviously, functions with a strong bias, i.e., with a high

probability to be either −1 or 1, have a low AS. Further it
can be seen that the average sensitivities of all functions
are very close to the lower bound. The mean value of the
AS is 0.918874 . Hence, it can be stated that the AS of this
network is rather low. Similar results can be obtained con-
sidering the network without the extension as originally
defined by Covert et al. [3] and Samal and Jain [23].
In a second step we want to take the topology of the net-

work into account. Therefore, we now assume that only
the in-nodes of the network are equally distributed. How-
ever, the output of these functions will most certainly not
be uniform, i.e., the functions have a bias unequal zero.
Since the outputs of these functions serve as inputs of the
functions of the next layer, we assume that their input dis-
tributions follow the output distribution of the first-layer
functions. The output distributions of the second-layer
functions serve then as input distributions of the third
layer and so on. Obviously this has an impact on the as of
the functions.
The results are shown in Figure 6. We did not include

any upper bounds in this figure since these now depend on
each input distribution (see Proposition 6). It can be seen
that the AS is still very close to the lower bound. How-
ever, a few functions have a rather large AS, e.g., it can
be seen in Figure 6 that two types of functions with in-
degree K = 2 are very close to their upper bound (which
is in this case at as(f ) = 2). These functions have an argu-
ment with a sensitivity of 2. Due to the input distribution
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Figure 5 AS of functions plotted versus bias of functions (equally distributed inputs).

of these functions this argument has a very large proba-
bility (> 98% ) which leads to a very high AS close to 2.
Such high AS are normally observed for XOR and related
functions. The average value of the AS is 0.908445 , hence
the AS of the network further decreases when applying
product distributions at the inputs of the functions.

4.3 Comparison with random ensembles
The network appears to be more robust against transient
errors as for example certain randomly constructed net-
works. The in-degree distributions of all controlled nodes
(in-degree larger zero) is shown in Figure 3. For all nodes
with in-degree k we choose a random function out of the
set of functions with k relevant variables. For k = 1 this
results in E[ as(f )]= 1, for k > 1 we can at least state that
E[ as(f )]> k

2 , as it is well known that if we choose ran-
domly from functions, we expect an AS of k

2 . Taking the
in-degree distribution into account this implies that the
expectation of the AS of all BFs chosen in this way is larger
than 1.25.
It is well known that random function ensembles with

lower expected AS can be constructed, if functions with a
higher bias have higher probability to be chosen [24]. To
test if the observed robustness can be explained due to the
bias of the functions, we proceeded as follows. Again, a
random function is chosen for each node with in-degree

k. We determine the frequency distribution for the bias
b = P[ f = 1] for all functions of the original network
model with a certain in-degree k. The random network is
generated by replacing the original functions of the net-
work with functions drawn from an ensemble of functions
with the same distribution. For example, if k = 2, roughly
32% of all functions have b = 0.25, while all others have
b = 0.75. Hence, with probability 32% we choose a func-
tion with b = 0.25, and b = 0.75 otherwise. The data can
be found in the Additional file 1. As shown in [25,26], the
expectation of the AS is then given by

E(as(f )) = 2kb(1 − b)
2k

2k − 1
. (19)

The results obtained are shown in Table 1 sorted accord-
ing to the in-degree k. For k = 1 and k = 2 the observed
mean of as(f ) and the expectation of the random function
coincides as only identity functions, respectively, AND or
OR functions are chosen. For larger k, the observed mean
is always smaller as the expectation of the random func-
tion. For some values of k, for example k = 9, both values
are close to each other. This is due to the fact that the
corresponding functions are highly biased, which means
that there are three existing functions with the values for
b being 0.00195312, 0.0917969 and 0.994141. In contrast,
for k = 11 the mean of the observed values and the
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Figure 6 AS of functions plotted versus bias of functions (product distributed inputs).

expectation are far from each other. Indeed out of three
functions, there is one function with b = 0.354004 for
which, according to Equation (19), the expectation of the
AS is 5.03353147.
It should be noted that in random BNs the expectation

of the AS is an order parameter [5,6]. That is, if the
expectation is less or equal to one many random net-
works show the so-called ordered behavior. Namely, sin-
gle transient errors introduced in network nodes (by
flipping their state) do not spread through the net-
work with high probability. This ordered behavior is
in sharp contrast to the so-called disordered behav-
ior of random networks which is characterized by an
expectation of the AS larger one. Indeed, it has been
conjectured that biological relevant networks should be
ordered (or critical) but not disordered [27]. A further
investigation on how canalizing and nested canalizing
functions influence the average sensitivity can be found
in [7,11].

4.4 Impact of mutations on the metabolism
When investigating a regulatory network, the impact of
the network on the metabolism is of major interest.
Hence, only the stability of nodes in the bottom layer, i.e.,

Table 1 Fraction of functions with in-degree k, themean of
the AS of all functions with in-degree k, and the
expectation of an accordingly chosen random function
with same in-degree and same bias distribution (see text
and Equation 19)

k Fraction of functions av(f ) E(av(f ))

1 0.579905 1.000000 1.000000

2 0.179984 1.000000 1.000000

3 0.063291 0.887500 0.985714

4 0.143987 0.572115 0.623077

5 0.015427 0.491987 0.659895

6 0.006725 0.933824 1.737920

7 0.001187 0.796872 1.423026

8 0.004747 0.760416 1.641421

9 0.001187 0.300781 0.547935

10 0.000791 0.312500 0.587713

11 0.001187 1.009441 2.984577

12 0.000396 1.318360 3.481815

13 0.001187 0.003174 0.003174
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the output of the network, is relevant. In regulatory net-
works, mutations are a source for errors. We consider two
possible types of mutations. First we assume that a part
of promoter region of a gene is mutated or deleted. In
terms of our network this means that a edge is removed
and the corresponding input is set to false (+1 ). The gene
may still be transcribed, hence, the node itself remains
functional. The second type of mutation is the deletion of
a gene or a mutation which leads to disfunctional gene.
In this case, the node is constantly set to false. In both
cases, the value of one node may change (error). This
error is now fed through the out-going edges of this node
to other nodes. However, due to the low sensitivity of
all functions in the network, the error has no impact on
many nodes and, therefore, will in most cases not reach
the bottom layer, which is, as mentioned above, the only
part of the network, whose stability is crucial. From that
point of view it can be stated that these permanent errors
behave similar to the transient errors described above and
that networks with a low mean AS are robust against
such errors.

5 Summary
It is an important problem to characterize BFs that appear
in Boolean models of regulatory networks. This will help
to understand the constraints underlying such networks,
but can, for example, also help to improve network infer-
ence algorithms (see for examples [28,29] for algorithms
that utilize the membership to the class of unate func-
tions). In this study, we focused on several properties
that have been shown to be of interest in the context
of Boolean regulatory networks. Namely, we discussed
different classes of BFs such as unate and canalizing
functions. Further, sensitivity measures of BFs, like the
influence of variables, or the AS are considered. We
devised simple algorithms to test these properties. To test
canalizing properties of BFs we applied the Fourier rep-
resentation of BFs where functions are represented as
multivariate, multilinear real polynomials. To this end,
we introduced two spectral relationships between the so-
called restricted BFs and their unrestricted counter part.
The Fourier representation is further useful as many inter-
esting properties such as the influence of unate functions
or the AS of BFs can easily be characterized in the spectral
domain. For example, we show how to obtain theoretical
upper bounds on the AS for unate functions using spectral
techniques.
As an application of our results, we analyzed an

extended [30] regulatory Boolean network model of the
central metabolism of E. coli. It turned out that most func-
tions are within the classes of unate functions. Further, the
AS of most functions is close to a theoretical lower bound
and far from the new upper bound. Especially, functions
with large in-degree have low AS even if their so-called

bias is close to 0.5 (see Figure 5). We compared our find-
ings to random BNs with similar parameters and find that
the investigated networks has an even lower AS. From that
we conclude that the whole network is stable, and robust
to small changes, e.g., mutations.

6 Endnote
aPreliminary results of this study have been presented at
the 8th International Workshop on Computational Sys-
tems Biology (WCSB 2011) and the 3rd International
Conference on Bioinformatics andComputational Biology
(BICoB 2011).
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