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Abstract

DNA methylation plays an important role in many biological processes by regulating gene expression. It is commonly
accepted that turning on the DNA methylation leads to silencing of the expression of the corresponding genes. While
methylation is often described as a binary on-off signal, it is typically measured using beta values derived from either
microarray or sequencing technologies, which takes continuous values between 0 and 1. If we would like to interpret
methylation in a binary fashion, appropriate thresholds are needed to dichotomize the continuous measurements. In
this paper, we use data from The Cancer Genome Atlas project. For a total of 992 samples across five cancer types,
both methylation and gene expression data are available. A bivariate extension of the StepMiner algorithm is used to
identify thresholds for dichotomizing both methylation and expression data. Hypergeometric test is applied to
identify CpG sites whose methylation status is significantly associated to silencing of the expression of their
corresponding genes. The test is performed on either all five cancer types together or individual cancer types
separately. We notice that the appropriate thresholds vary across different CpG sites. In addition, the negative
association between methylation and expression is highly tissue specific.

Introduction
DNA methylation plays an important role in cancer
through hypermethylation to turn off tumor suppressors
and hypomethylation to activate oncogenes [1,2]. It is
widely accepted that DNA methylation is associated with
silencing of gene expression [3]. With data from high-
throughput array and sequencing technologies, several
studies have analyzed the relationship between methyla-
tion and gene expression [4-6].
When the relationship between methylation and gene

expression is discussed, both are often described as binary
signals (i.e., on-off, high-low) [7]. For example, for a gene
whose expression can be controlled by the methylation of
a CpG site in its promoter region: if the CpG site is methy-
lated, the gene’s expression is typically low; if the CpG
site is unmethylated, the expression of the gene can be
either high or low, depending on other controlling mech-
anisms. On the other hand, measurements of methylation
and expression obtained using microarrays and sequenc-
ing technologies are in continuous values. If we want to
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interpret the relationship between methylation and gene
expression data using the binary language, appropriate
thresholds are needed to dichotomize the measurements.
To jointly analyze methylation and gene expression, an

ideal dataset would be a large collection of samples for
which both data types are available. The Cancer Genome
Atlas (TCGA) project provides such data for a large num-
ber of cancer samples [8-11]. Moreover, the TCGA sam-
ples are derived from multiple cancer and tissue types.
The diversity among the samples may enable us to see
relationships that cannot be observed in individual tissue
types.
In this paper, we downloaded DNA methylation and

gene expression data in TCGA. Data for a total of 992
samples were available, covering five cancer types. We
extended the StepMiner algorithm [12] to identify thresh-
olds to dichotomize methylation and expression mea-
surements. Hypergeometric test was used to identify
CpG sites whose methylation is significantly associated to
silencing of expression of their corresponding genes. We
observed that appropriate thresholds are highly CpG site
specific, and the methylation-expression association for
many genes is tissue-type specific.
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Materials andmethods
Methylation and expression data from TCGA
TCGA data portal (https://tcga-data.nci.nih.gov/tcga/
tcgaDownload.jsp) provides three ways for accessing the
data. Two of them, ‘data matrix’ and ‘bulk download,’
require investigators to manually select a subset of the
data and then automatically collect relevant data files into
a compressed .tar file for download. After that, additional
effort is needed to parse and assemble the downloaded
files into formats useful to programming environments
such as Matlab or R. Since TCGA data keep growing and
the manual selection can be tedious when multiple data
types and disease types are considered, it is difficult to
keep track of the manual selections and guarantee repro-
ducibility. Therefore, we chose the third way, ‘open-access
http directory,’ which contains links for all individual
data files in TCGA (http://tcga-data.nci.nih.gov/tcgafiles/
ftp_auth/distro_ftpusers/anonymous/tumor/). We cre-
ated Matlab scripts to programmatically grab methyla-
tion and RNA-seq data files for each individual disease
type, automatically parse them, and organize them into
tab delimited spreadsheets for subsequent analysis. Our
scripts for automatically downloading TCGA data are
available at http://odin.mdacc.tmc.edu/~pqiu/software/
DownloadTCGA/.
Genome-wide methylation measurements were gen-

erated using the Illumina Infinium Human DNA
Methylation27 array platform (Illumina, Inc., San Diego,
CA, USA), which interrogates the methylation status of
27,578 CpG sites in proximal promoter regions of 14,475
genes in the human genome. As of 12 February 2013,
methylation data for 2,796 samples across 12 cancer
types were available. We downloaded the TCGA level
3 preprocessed data, which are the ratio Mi/(Ui + Mi)
for each CpG site i. Mi represents the signal intensity of
the methylated probe for CpG site i, and Ui is the sig-
nal intensity of the unmethylated probe. Therefore, the
numerical range of the data is between 0 and 1. Zero (0)
indicates unmethylated, whereas 1 indicates completely
methylated. The data contain a small fraction of empty
entries, because the corresponding probes either overlap
with known single-nucleotide polymorphisms or other
genomic variations, or their signal intensities are lower
than the background.
TCGA uses several platforms to quantify gene expres-

sion, among which the Illumina GA II and HiSeq plat-
forms profiled the largest number of samples. As of 12
February 2013, preprocessed RNA-seq data for 4,108 sam-
ples across 11 cancer types were available. The prepro-
cessed data are the RPKM values for 20,532 genes in
each sample. Roughly, the numerical range of the data
is between 0 and 105. For each gene, we replaced the
zero entries with the minimal non-zero value of this gene
across all samples and transformed the data to log scale.

The total number of overlapping samples between
the above methylation and expression data was 992.
The overlap covered five different cancer types: breast
cancer (BRCA, 313 samples), colon and rectal cancer
(COAD/READ, 227 samples), kidney renal clear cell car-
cinoma (KIRC, 208 samples), squamous cell lung cancer
(LUSC, 129 samples), and uterine corpus endometrioid
carcinoma (UCEC, 115 samples). Our analysis was per-
formed based on these 992 overlapping samples.

Extend StepMiner for dichotomizingmethylation and
expression data
StepMiner was originally developed to extract binary pat-
terns in microarray gene expression data [13] and study
the boolean implications between expression of pairs of
genes [12]. StepMiner examines data in a univariate fash-
ion. Given a random variable X with an unknown proba-
bility distribution and n independent observations of the
random variable xk ,(k=1,2,...,n), the algorithm first sorts the
observations in ascending order x(1) ≤ x(2) ≤ ... ≤ x(n).
Then, the sorted data are fitted by a step function, f (i) =
μ1I(i ≤ t) + μ2I(i > t), where i = 1, 2, ..., n and I(.) is
an indicator function. Denote the mean of all observations
as μ, the deviation of the fitted step function to sample
mean as signal = ∑n

i=1(f (i) − μ)2, and the fitting error
as noise = ∑n

i=1(f (i) − x(i))2. The goodness of fit can
be defined by a signal-to-noise ratio (SNR), and the best
fit parameters can be found by maximizing SNR = signal

noise .
Operationally, the maximization problem can be solved
by exhaustively enumerating all possible integer values for
1 ≤ t < n. For each possible value of t, calculating the
ratio is straight forward becauseμ1 is the mean of the first
t observations in the sorted data and μ2 is the mean of the
remaining observations. Once the t∗ that maximizes SNR
is identified, the threshold for dichotomizing the observa-
tion can be defined as 1

2 (x(t∗) + x(t∗+1)). The maximum
value of signal-to-noise ratio SNR(t∗) depends on the dis-
tribution of X. If X has an extreme bi-modal distribution
and its probability density function is a sum of two delta
functions, SNR(t∗) approaches positive infinity. If X fol-
lows a uniform distribution, SNR(t∗) equals to 3. If X
follows a Gaussian distribution, SNR(t∗) is approximately
1.75, regardless of the values of mean and variance of
the Gaussian. Two examples using real data are shown in
Figure 1, illustrating how univariate StepMiner identifies
thresholds for gene expression of ESR1, and cg20253551
which measures the methylation status of a CpG site of
that gene.
As shown above, StepMiner is a univariate algorithm,

which determines a threshold for each feature by its
marginal distribution. Since we are interested in the rela-
tionship between the expression of a gene and its methy-
lation, one natural idea is to extend the algorithm to

https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
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Figure 1 Two examples of univariate StepMiner. (a) Scatter plot of ESR1’s gene expression and methylation (cg20253551). The dotted lines
indicate thresholds identified by StepMiner. (b) Samples are ordered according to ESR1 expression, and a step function is fitted to the ordered
expression data and identify a threshold to dichotomize expression. (c) A step function is fitted to the ordered methylation data and identify a
threshold to binarize methylation.

a bivariate analysis and jointly consider two variables,
which we call StepMiner2D. As shown in Figure 1b, the
univariate StepMiner assigns each observation to a point,
whose x-coordinate is the rank of this observation, and
y-coordinate is the observed value itself. The collection
of all observations forms a non-decreasing curve which
is fitted by a step function. In order to extend the algo-
rithm to bivariate, we define a non-decreasing surface
and fit it with a bivariate step function. Given n observa-
tions of two random variable X and Y, (xk , yk),(k=1,2,...,n),
we assign each observation (xk , yk) to a point in a three-
dimensional (3D) space. The x-coordinate of the point is
the rank of xk with respect to all the observations for X;
the y-coordinate of the point is the rank of yk with respect
to all the observations for Y ; and the z-coordinate of the
point is xk + yk . The collection of all points forms a sur-
face, which is fitted by a bivariate step function with six
parameters,

f (i, j) = μ11I(i ≤ tx, j ≤ ty) + μ12I(i > tx, j ≤ ty)

+ μ21I(i ≤ tx, j > ty) + μ22I(i > tx, j > ty),
(1)

where i and j both range from 1 to n.
To illustrate how to compute StepMiner2D, one exam-

ple is shown in Figure 2 using the same data as the
previous example. Scatter plot of ESR1’s methylation and

expression is shown in Figure 2a, alongwith the thresholds
identified by StepMiner2D. To compute the thresholds,
we first perform rank transformation. Assume xk is the
ith smallest among all observed value for X, and yk is the
jth smallest among all observed value for Y, the data point
(xk , yk) is mapped to point (i, j). The rank transformed
data are shown in Figure 2b. To form a non-decreasing
surface sitting on top of the rank transformed data, a
‘height’ z(i, j) = xk + yk is defined at point (i, j) to
which the kth observation is mapped. For an (i, j) point
to which no observation is mapped, we define z(i, j) =
max
u≤i,v≤j

z(u, v). Such a definition guarantees that the sur-

face is non-decreasing, i.e., z(i, j) ≥ max
u≤i,v≤j

z(u, v). To

ensure that X and Y contribute equally, the observations
are normalized to zero-mean-unit-variance before defin-
ing z. Finally, denote μ = 1

n2
∑n

i,j=1 z(i, j), the parameter
values of the best fit two-dimensional (2D) step function
can be found by optimizing an SNR = (

∑n
i,j=1(f (i, j) −

μ)2)/(
∑n

i,j=1(f (i, j) − z(i, j))2) in a similar exhaustive
search fashion as the one-dimensional (1D) case. Com-
puting z and optimizing SNR on a n × n grid can be
time consuming when n is large. For computational effi-
ciency, we approximate the surface on a 50 × 50 grid.
In Figure 2c, the surface z is shown as a heatmap, where
blue indicates small value and red indicates large value.
Figure 2d shows the points (xk , yk , zk) and the best fit
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Figure 2 An example of StepMiner2D. (a) Scatter plot of ESR1’s gene expression and methylation. The dotted lines indicate threshold identified
by StepMiner2D. (b) Scatter plot of rank transformed data. (c) Heatmap showing a non-decreasing surface sitting on top of the rank transformed
data. (d) Three-dimensional visualization of points on the non-decreasing surface and the best fit bivariate step function.

bivariate step function. The optimal SNR for this example
is 5.17. Similar to the 1D case, the maximum value of SNR
depends on the joint distribution of X and Y. If the joint
probability density function is a sum of two or three delta
functions, the optimal SNR approaches positive infinity.
If X and Y are independent, the optimal SNR is 3 for
uniform distribution and approximately 1.75 for Gaussian
distribution.

Hypergeometric test for methylation controlled genes
The optimal SNR value in StepMiner2D measures the
multi-modality of the joint distribution of X and Y, rather
than the association between the two variables. For exam-
ple, if X and Y independently follow two bi-modal dis-
tributions, although there is no association between the
two variables, the optimal SNR can be large. Thus, SNR
does not seem to be suitable for evaluating the associa-
tion between methylation and expression. Here, we are
interested in one particular kind of association, whether
methylation of a CpG site leads to down-regulation of
its corresponding gene expression. After dichotomizing
methylation and expression data, the sufficient statis-
tics become counts of points in the four quadrants in

Figure 2a. The significance of methylation controlled gene
can be intuitively explained as whether the observed
count in the upper-right quadrant is significantly less
than expected. Popular statistical tests for 2 × 2 contin-
gency tables, such as Fisher exact and chi-square tests,
are designed to evaluate the whether counts are signifi-
cantly unbalanced but not toward a specific direction. We
choose to use hypergeometric test. Let N denote the total
number of samples; R is the total number of methylated
samples (sum of points in the upper-right quadrant and
the lower-right quadrant); U is the total number of sam-
ples with high gene expression (total number of points in
the two upper quadrants). Condition onN, R, andU, if the
methylation and expression are independent, the number
of samples in the upper-right quadrant k follows a hyper-
geometric distribution p(k) = (U

k
)(N−U

R−k
)
/
(N
R
)
. To evaluate

the significance of the observed count in the upper-right
quadrant K, we can compute the probability of observing
K or less points under the assumption that methylation
and expression are independent p value = ∑K

k=0 p(k).
This is a hypergeometric test specifically for evaluat-
ing the significance of whether methylation turns off
gene expression.
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Results
Data preprocessing
We preprocessed the TCGA data by filtering out CpG
sites with small variance or many missing data points
and matching methylation and expression data accord-
ing to genes. The methylation data we downloaded from
TCGA were generated by the Methylation27 array plat-
form, which provided the methylation status of 27,578
CpG sites in 14,475 genes across 992 cancer samples.
We excluded CpG sites whose annotated genes are not
present in the expression data. We also excluded CpG
sites with more than 1% missing data and ones whose
methylation beta value is smaller than 0.01 for more than
95% of the samples. After applying these filtering crite-
ria, we obtained a total of 11,189 CpG sites annotated to
7,344 unique genes. For approximately half of the genes,
only one CpG site is measured for each gene; data for
two CpG sites are available for the majority of the other
half; for a very small number of genes, measurements of
multiple CpG sites are available. In the subsequent sub-
sections, for the methylation data of each of the 11,189
CpG sites, we extracted the expression data of its cor-
responding gene and focused our bivariate analysis on
features paired according to genes. Preprocessed data and
the code for our analysis is available at http://odin.mdacc.
tmc.edu/~pqiu/projects/MethExpr/ .

Identification of methylation on-off threshold
For each of the 11,189 methylation-expression pairs, we
applied StepMiner2D to examine the data for all 992 sam-
ples together. Using such a pan-cancer analysis strategy,
we identified thresholds to dichotomize the data. We per-
formed hypergeometric test to examine whether methyla-
tion was significantly associated to the down-regulation of
expression of its corresponding gene.We filtered out cases
where the number of samples in the upper-right quadrant
minus that in the lower-left quadrant was more than 10%
of the total number of samples, which obviously did not
support the concept of methylation turning off the expres-
sion. Using a p value threshold of 0.01 and Bonferroni
correction, 2,976 pairs showed significant association, and
the ESR1 example in Figures 1 and 2 was among the sig-
nificant ones. Figure 3 shows a histogram of the identified
methylation thresholds for the 2,976 significant associa-
tions, where we observed a wide-spread distribution. This
result indicates that although the beta value quantifica-
tion of methylation has a consistent numerical range of
[0, 1] across different genes, the appropriate threshold for
dichotomizing the beta values is highly CpG site specific.
The association between methylation and expression of

ESR1 was significant when all 992 samples were examined
together. However, when we examined individual cancer
types separately, the methylation-expression association
for ESR1 became insignificant. In Figure 4, the thresholds
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Figure 3 Histogram of thresholds for dichotomizing methylation
data. For the 2,976 significant methylation-expression associations,
StepMiner2D identified 2,976 thresholds for dichotomizing the
methylation data. A histogram of those thresholds shows that the
appropriate value for binarizing methylation varies for different
methylation sites.

in all the plots are the same, and they were derived by con-
sidering all cancer types together. If we focus on breast
cancer samples and ignore the rest, we see that almost all
breast cancer samples are ESR1 unmethylated, and their
ESR1 expression can be either high or low, which does not
contradict with the concept that methylation turns off the
expression. However, since very few breast cancer sam-
ples are methylated, we do not know whether methylated
samples will have high ESR1 expression or low expression.
Thus, we do not have strong evidence that ESR1 methy-
lation turns off its expression in breast cancer samples,
because we do not have enough points in the upper-
right and lower-right quadrants. In this case, the lack of
ESR1methylated samples makes it impossible to prove the
association between ESR1’s methylation and expression
in breast cancer. Similarly, for COAD/READ, although
most samples exhibit high methylation and low expres-
sion, the association is also insignificant. Since ESR1 is
seldom highly expressed in either methylated or unmethy-
lated samples of COAD/READ, there is little evidence that
the low expression of ESR1 in COAD/READ is caused by
methylation or some other regulatory mechanisms. Sim-
ilar observations can be made for other cancer types in
Figure 4. In fact, if the StepMiner2D method is applied to
individual cancer types separately, we will not be able to
identify the appropriate thresholds for dichotomizing the
methylation data. This observation illustrates the power
of the pan-cancer analysis strategy that includes multi-
ple cancer types. However, this also raises a question.
Maybe the observed ESR1 methylation-expression asso-
ciation is simply a statistical property induced by tissue

http://odin.mdacc.tmc.edu/~pqiu/projects/MethExpr/
http://odin.mdacc.tmc.edu/~pqiu/projects/MethExpr/


Liu et al. EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:8 Page 6 of 8
http://bsb.eurasipjournals.com/content/2013/1/8

0 0.5 1

−5

0

5

10
all samples

E
S

R
1 

ex
pr

0 0.5 1

−5

0

5

10
BRCA

0 0.5 1

−5

0

5

10
KIRC

0 0.5 1

−5

0

5

10
LUSC

E
S

R
1 

ex
pr

0 0.5 1

−5

0

5

10
UCEC

cg20253551 − ESR1 methylation
0 0.5 1

−5

0

5

10
COAD/READ

Figure 4 ESR1methylation and expression. Scatter plots of methylation and expression data for ESR1 in all five cancer types together and
individual cancer types separately. The dotted lines indicate the thresholds identified by StepMiner2D using all cancer types together. The
association is significant when all cancer types are examined together but insignificant in individual cancer types.

differences, rather than an indication of a real mechanis-
tic interaction. In the next subsection, we will discuss this
issue further.

Tissue-specific association betweenmethylation and
expression
We evaluated the association between methylation and
expression using samples in individual cancer types
separately. Figure 5 shows the number of significant
methylation-expression associations, when all cancer
types were examined together and separately. One
hundred eleven insignificant associations in pan-cancer
analysis turned out to be significant in an individual can-
cer type. Among all the 2,976 significant associations in
pan-cancer analysis, 2,072 were insignificant in all five
individual cancer types, similar to the pattern shown in
Figure 4. The majority of the remaining associations were
significant in only one or two cancer types, indicating
that the association between methylation and expression
is highly tissue specific. For example, Figure 6 shows that
the methylation of SOX8 is significantly associated to low
SOX8 expression in breast cancer and kidney renal clear
cell carcinoma but not in the other three cancer types.
Such tissue-specific relationship echoes a previous result
that hierarchical clustering of methylation data is able to
separate tissue types and cancer subtypes [14,15]. Four
genes showed significant methylation-expression associ-
ation in all five individual cancer types, BST2, SLA2,

GSTT1, and GSTM1. Figure 7 shows the data for BST2.
We think that genes showing significant association in at
least one individual cancer type are more likely to rep-
resent mechanistic methylation-expression interactions,
compared to the ones that are only significant when all
cancer types are considered.
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Figure 5Methylation-expression association is tissue specific.
The bar plot shows the number of significant associations when all
cancer types are considered together and the numbers when
individual cancer types are considered separately.
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Figure 6 SOX8methylation and expression. The methylation-expression association for SOX8 is significant in BRCA and KIRC but not in the other
three cancer types.

Conclusions
We performed integrative analysis of methylation and
gene expression data of five cancer types in TCGA.
First, we pooled samples from all five cancer types
together and applied StepMiner2D to identify thresholds

for dichotomizing the methylation and expression data. In
such a pan-cancer analysis strategy, the diversity and vari-
ation among samples allow us to observe positive and neg-
ative signals in sufficient number of samples and empower
the method to identify the appropriate thresholds. Then,
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Figure 7 BST2methylation and expression. The methylation-expression association for BST2 is significant in all five cancer types examined here.
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we applied hypergeometric test to identify CpG sites
whose methylation is significantly associated to silenc-
ing of the expression of their corresponding genes, either
using all five cancer types together or using individual
cancer types separately. When all five cancer types were
examined together, 2,976 CpG sites showed significant
negative association with gene expression. However, when
samples in different cancer types were considered sepa-
rately, a much smaller number of significant associations
were observed in at least one cancer type. We specu-
late that the associations only significant in pan-cancer
analysis are likely to be induced by tissue differences,
whereas significant associations observed in individual
cancer types are more likely to reflect regulatory rela-
tionships between methylation and gene expression. For
future work, there are a few possible extensions. The
methylation data used here are generated by the Illumina
Methylation 27k platform. TCGA also generates methyla-
tion data using the Illumina Methylation 450k platform,
which measures roughly 20 times more CpG sites. We
plan to redo the analysis using the 450k methylation data,
which will enable us to identify more associations between
methylation and expression.Moreover, the proposed anal-
ysis strategy can also be applied to examine associations
among measurements made by other modalities, such
as microRNA expression, DNA copy number variation,
protein expression, etc.
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