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Abstract

Background: Accurate prediction of cancer prognosis based on gene expression data is generally difficult, and
identifying robust prognostic markers for cancer remains a challenging problem. Recent studies have shown that
modular markers, such as pathway markers and subnetwork markers, can provide better snapshots of the underlying
biological mechanisms by incorporating additional biological information, thereby leading to more accurate cancer
classification.

Results: In this paper, we propose a novel method for simultaneously identifying robust synergistic subnetwork
markers that can accurately predict cancer prognosis. The proposed method utilizes an efficient message-passing
algorithm called affinity propagation, based on which we identify groups – or subnetworks – of discriminative and
synergistic genes, whose protein products are closely located in the protein-protein interaction (PPI) network. Unlike
other existing subnetwork marker identification methods, our proposed method can simultaneously identify multiple
nonoverlapping subnetwork markers that can synergistically predict cancer prognosis.

Conclusions: Evaluation results based on multiple breast cancer datasets demonstrate that the proposed
message-passing approach can identify robust subnetwork markers in the human PPI network, which have higher
discriminative power and better reproducibility compared to those identified by previous methods. The identified
subnetwork makers can lead to better cancer classifiers with improved overall performance and consistency across
independent cancer datasets.

Keywords: Cancer classification; Subnetwork marker identification; Protein-protein interaction network;
Message-passing algorithm

Introduction
Identifying disease-related biological markers is an impor-
tant problem in translational genomics, and there have
been significant research efforts to find robust markers
for disease diagnosis and prognosis from gene expres-
sion data obtained from microarrays or next-generation
sequencing (NGS). However, the small sample size and
the high dimensionality of the typical genomic data makes
the prediction of such biomarkers very challenging. A
large number of approaches have been proposed so far to

*Correspondence: byoon@qf.org.qa
1Department of Electrical and Computer Engineering, Texas A&M University,
77843-3128 College Station, TX, USA
2College of Science, Engineering, and Technology, Hamad Bin Khalifa
University (HBKU), P.O. Box 5825 Doha, Qatar

deal with these issues, where it has been recently shown
that the concept of ‘modular markers’ have potentials for
detecting better disease markers that are more robust and
reproducible across independent datasets. In the past, it
has been a common practice to look for the so-called ‘key
genes’ that show significant differential expression under
different conditions or between distinct phenotypes to
discover genemarkers that may be used for discriminating
between different classes of biological/clinical samples.
Unlike these traditional gene markers, where each gene
is viewed as a potential biomarker, a modular marker
consists of multiple genes that belong to the same func-
tional module and show coordinated behaviors to fulfill
a common biological function. The utilization of modu-
lar markers allows us to interpret and analyze the gene
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expression data in amore system-oriented way, whichmay
facilitate the prediction of system-level properties based
on the markers.
Examples of such modular markers include the path-

way markers [1-5] and the subnetwork markers [6,7]. A
pathway marker consists of multiple genes that belong
to the same functional pathway. In order to use a path-
way marker in a classification task, we first need to infer
the activity level of the pathway based on the expression
levels of its member genes, after which the inferred path-
way activity can be used as a feature in a classifier. So far,
several different methods have been proposed for path-
way activity inference [1-5], and it has been shown that
pathway markers tend to be more effective and robust
compared to traditional gene markers. Unfortunately, the
usefulness of pathwaymarkers is practically limited by our
incomplete pathway knowledge. In fact, currently known
pathways cover only a relatively small number of genes;
hence, the reliance on pathway markers may result in
excluding crucial genes that may play important roles in
determining the phenotypes of interest.
The concept of subnetwork markers has been origi-

nally proposed to address the weakness of pathway mark-
ers [6,8]. The main idea is to overlay the protein-protein
interaction (PPI) network with the gene expression data
to identify potential ‘subnetwork markers,’ which consist
of discriminative genes whose protein products interact
with each other, hence, connected in the PPI network.
Conceptually, we can find such subnetwork markers by
identifying subnetwork regions that undergo significant
differential expression across different phenotypes, and
the detected subnetwork markers may potentially corre-
spond to functional modules – such as signaling pathways
or protein complexes – in the underlying biological net-
work. PPI networks provide a much better gene coverage
compared to the set of currently known pathways; hence,
this network-based approach can essentially overcome the
major shortcoming of the pathway-based approach.
Until now, several different strategies have been pro-

posed for identifying subnetwork markers. For example,
Chuang et al. [6] proposed an efficient algorithm for find-
ing subnetwork markers, where they first identify highly
discriminative seed genes and then greedily grow the sub-
networks around the seed genes to maximize the mutual
information between the average z-score of the member
genes and the class label. More recently, Su et al. [7] pro-
posed a different strategy, where differentially expressed
linear paths are found by dynamic programming and
overlapping paths are combined to obtain discriminative
subnetwork markers. Both studies [6,7] have shown that
subnetwork markers can lead to more accurate and robust
classifiers, compared to pathway markers.
In this paper, we propose a novel method for identi-

fying effective subnetwork markers for predicting cancer

prognosis. The proposed method is based on an efficient
message-passing algorithm, called affinity propagation,
which can be used to efficiently identify clusters of dis-
criminative and synergistic genes whose protein products
are either connected or closely located in the PPI network.
Unlike previous subnetwork marker identification meth-
ods, the proposed method can simultaneously predict
multiple subnetwork markers, which are mutually exclu-
sive and have the potential to accurately predict cancer
prognosis in a synergistic manner. Based on several inde-
pendent breast cancer datasets, we demonstrate that the
proposed method can identify better prognostic markers
that have improved reproducibility and higher discrimina-
tive power compared to themarkers identified by previous
methods.

Materials andmethods
Datasets
We obtained four independent breast cancer microarray
gene expression datasets from previous studies, which
we refer to as the USA dataset (GEO:GSE2034) [9],
Netherlands dataset (NKI-295) [10], Belgium dataset
(GEO:GSE7390) [11], and Sweden dataset (GEO:GSE1456)
[12], respectively. The USA, Belgium, Sweden datasets
were profiled on the Affymetrix U133a platform and
downloaded from the Gene Expression Omnibus (GEO)
website [13]. The Netherlands dataset was profiled on a
custom Agilent microarray platform, and it was down-
loaded from the Stanford website [14]. The USA dataset
contains the gene expression profiles of 286 breast can-
cer patients, the Netherlands dataset contains the profiles
of 295 patients, the Belgium dataset contains the pro-
files of 198 patients, and the Sweden dataset contains the
profiles obtained from 159 patients. In this study, gene
expression profiles of the patients for whom metastasis
had been detected within 5 years of surgery were labeled
as ‘metastatic’, while the remaining profiles were labeled
as ‘non-metastatic’. The USA, Netherlands, Belgium, and
Sweden datasets respectively contain 106, 78, 35, and 35
metastatic profiles. The human protein-protein interac-
tion network used in this paper was obtained from a
previous study on subnetwork marker identification by
Chuang et al. [6], which consists of 11,203 proteins and
57,235 interactions. We overlaid the gene expression data
in the four breast cancer datasets with this PPI network,
by mapping each gene to the corresponding protein in the
network. After removing the proteins that do not have
corresponding genes in all four datasets, we obtained an
induced network with 26,150 interactions among 4,936
proteins.

The affinity propagation algorithm: a brief overview
In order to identify discriminative subnetwork markers,
we apply affinity propagation [15], an efficient clustering
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algorithm based on a message-passing approach. In
affinity propagation, real-valued messages are iteratively
exchanged between data points until a good set of exem-
plars (i.e., representative data points) are identified. The
data points are clustered around the exemplars that best
represent them, which gives rise to clusters that consist of
similar data points. During the message-passing process,
two different types of messages are exchanged between
data points: responsibility and availability. The responsi-
bility r(i, k) measures the suitability of the data point k
to be an exemplar of the data point i, considering other
potential exemplars. The availability a(i, k) measures the
appropriateness of choosing the data point k as the exem-
plar for the data point i, based on the choice of other data
points. At each iteration, these messages are updated as
follows:

r(i, k) ← s(i, k) − max
k′ s.t. k′ �=k

{
a(i, k′) + s(i, k′)

}
(1)

a(i, k) ← min

⎧⎨
⎩0, r(k, k) +

∑
i′ s.t. i′ /∈{i,k}

max
{
0, r(i′, k)

}
⎫⎬
⎭ ,

(2)

where s(i, k) is the similarity between the data points i
and k, used as the input of the clustering algorithm. This
similarity s(i, k) can be asymmetric. The self-availability is
updated in a slightly different way, as shown below:

a(k, k) ←
∑

i′ s.t. i′ �=k
max

{
0, r(i′, k)

}
. (3)

The data point k that maximizes the sum a(i, k) + r(i, k)
is chosen as the exemplar for the data point i, and the algo-
rithm converges if the set of exemplars does not change
further.
So far, affinity propagation has been applied to various

applications – such as predicting genes from microarray
data and clustering facial images – and it has been shown
to effectively identify meaningful clusters of data points
at a much lower computational cost than traditional clus-
tering methods [15]. One important advantage of affinity
propagation is that the number of clusters need not be
specified in advance. This is especially useful in our cur-
rent application, since we neither know how many func-
tional modules are embedded in the biological network at
hand nor how many of them are relevant to cancer prog-
nosis, which makes it practically difficult to determine
how many subnetwork markers we should look for.

Computing the similarity between genes
In our proposed method, we use affinity propagation to
identify clusters – or subnetworks – of discriminative and
synergistic genes, whose protein products either inter-
act with each other or are closely located in the PPI

network. In order to use affinity propagation to identify
the gene clusters, we first have to define the similarity
s(i, k) between genes gi and gk for all gene pairs. The
characteristics of the final clusters – especially, their use-
fulness as potential subnetwork markers – will critically
depend on how we define this similarity. For this rea-
son, we take the following points into consideration when
defining s(i, k):

1. The proteins corresponding to the genes in the same
cluster should have direct interaction or should be
closely located in the PPI network.

2. Every gene in a potential subnetwork marker should
have sufficient discriminative power to distinguish
between the two class labels (metastatic vs.
non-metastatic).

3. The discriminative power to distinguish between the
two class labels should be increased by combining
genes within the same cluster.

Based on these considerations, we define the similarity
s(i, k) as follows:

s(i, k) = tk + min {tik − ti, tik − tk} − α |ti − tk| (4)

if the shortest distance d(i, k) between the protein prod-
ucts of the genes gi and gk in the PPI network satis-
fies d(i, k) ≤ 2. Otherwise, we set the similarity to
s(i, k) = −∞. The discriminative power of a given gene is
measured in terms of the t-test statistics score of the log-
likelihood ratio (LLR) between the two class labels, and
ti and tk are the t-test scores of gi and gk , respectively.
Similarly, tik is the t-test score of the combined LLRs of
gi and gk which is computed by summing up the LLRs
of the two genes. This term, tik , reflects the discrimina-
tive power of the gene pair (gi, gk) after combining them.
The self-similarity was set to s(k, k) = c for all k, where
the constant c was chosen such that s(i, k) ≥ c for only
1% of all gene pairs (gi, gk). Uniform initialization of the
self-similarity s(k, k) = c guarantees that every gene in
the dataset gets equal chance to be an exemplar at the
beginning of the message-passing process.
As shown in (4), the similarity s(i, k) between gi and gk

is defined in an asymmetric way, where the first term cor-
responds to the discriminative power of the gene gk , the
second term measures the improvement in discriminative
power after combining the two genes gi and gk , and the
last term corresponds to a penalty term for the difference
between tk and ti. The parameter α ∈ [0, 1] is used to con-
trol the penalty term. According to the above definition,
gene gi regards gene gk as being ‘similar’ to itself:

1. if gk has high discriminative power (first term);
2. if combining the two genes increases the overall

discriminative power;
3. if both genes have similar discriminative power.
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The main reason underlying the asymmetric definition
of the similarity s(i, k) is to indicate the direction of simi-
larity. Based on our asymmetric definition, the exemplars
of the identified clusters tend to have higher discrimina-
tive power compared to other non-exemplars. Intuitively,
the gene similarity defined in (4) will make the affinity
propagation algorithm identify gene clusters that consist
of highly discriminative genes that are synergistic to each
other and whose protein products are closely located in
the PPI network.

Post-processing the identified gene subnetworks
Although the affinity propagation algorithm can effec-
tively identify subnetworks that consist of discriminative
and synergistic genes, the clustering process does not
completely rule genes with relatively lower discrimina-
tive power out of those subnetworks. As a result, the
initial subnetworks that are predicted by affinity propa-
gation may still contain genes with relatively lower dis-
criminative power compared to other genes in the same
subnetwork. In order to improve the overall discrimi-
native power of the potential subnetwork markers, we
post-processed the initial subnetworks as follows. First,
we clustered the genes in a given subnetwork into k
groups based on their t-test statistics scores using the
k-means clustering algorithm, where k was chosen to
be k = ⌊

log(# of gene in considered subnetwork) + 1
⌋
.

After clustering, the genes in the group with the
lowest average t-test score were removed from the
subnetwork.

Probabilistic inference of subnetwork activity
For estimating the activity level of a subnetwork based
on the gene expression profile of a patient, we adopted
the probabilistic pathway activity inference method intro-
duced in [4]. Given a subnetwork (or a pathway) with n
member genes G = {

g1, g2, . . . , gn
}
and the gene expres-

sion profile x = {
x1, x2, . . . , xn

}
of a patient, where xi is

the expression level of the gene gi, the activity level of the
subnetwork is computed by:

A(x) =
n∑

i=1
λi

(
xi

)
, (5)

where λi(xi) is the log-likelihood ratio between the two
class labels (in this work, metastatic vs. non-metastatic).
This is given by

λi(xi) = log
[
f 1i (xi)/f 2i (xi)

]
, (6)

where f ji (xi) is the conditional probability density function
(PDF) of xi under phenotype j. We assume that the gene
expression level of gi under phenotype j follows a Gaussian
distribution.

Results
Statistics of the identified subnetwork markers
For each of the four datasets, we identified potential
subnetwork markers using the proposed method and
selected the top 50 markers based on their discrimi-
native power, measured in terms of the t-test statistics
score of the subnetwork activity. Three different values of
α (= 0.2, 0.5, 0.8) were used in our experiments to investi-
gate the effect of the penalty term in (4) on the subnetwork
marker identification result. Table 1 shows the average
size of the top 50 subnetwork markers for each dataset
and α. The last two columns in the table show the aver-
age size of the subnetwork markers identified using the
method proposed by Chuang et al. [6], which we refer to
as the ‘greedy’ method, for simplicity. Two different values
of r were used for this greedy method. This parameter r
specifies the minimum improvement rate of the discrimi-
native power of a subnetwork marker. The greedy method
stops when extending the subnetwork marker by adding
a neighboring gene that does not improve the marker’s
discriminative power by at least the specified rate r. We
tested the greedy method with r = 0.05 (or 5% mini-
mum required improvement) which is the same as in [6].
We also tested the method with a lower rate r = 0.001
(or 0.1% minimum required improvement) in order to
allow the greedy search to continue even if the improve-
ment is not very significant and find out how a lower
rate affects the subnetwork size and its discriminative
power. As we can see from Table 1, the size of the net-
work decreases as α gets larger. In fact, a large α tends
to cluster only genes with similar discriminative power
(i.e., genes with similar t-test scores), thereby yielding
smaller subnetworks with fewer genes. Similar trends can
be also observed in Table 2, which shows the total number
of unique genes in the top 50 subnetwork markers. As see
can see in this table, a larger α results in a smaller number
of unique genes in the top subnetwork markers, as each
marker tends to get smaller.
Table 3 shows the total number of the common genes

between the identified subnetworks using different α. We
can see that around 77% of genes included in the identified
subnetworks using smaller α are also found in the subnet-
works identified with larger α. We examined the overlap
between the subnetworks identified on different datasets,

Table 1 Average size of the identified subnetworkmarkers

Dataset Proposedmethod Greedy

α = 0.2 α = 0.5 α = 0.8 r = 0.05 r = 0.001

USA 52.58 35.58 16.96 3.94 5.22

Netherlands 52.62 31.2 15.9 5.18 7.20

Belgium 37.64 20.2 12.3 4.12 5.48

Sweden 33.18 21.38 14.16 3.66 4.82
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Table 2 Total number of unique genes in the identified
subnetworkmarkers

Dataset Proposedmethod Greedy

α = 0.2 α = 0.5 α = 0.8 r = 0.05 r = 0.001

USA 2,629 1,779 848 169 217

Netherlands 2,631 1,560 795 158 222

Belgium 1,916 1,010 615 113 149

Sweden 1,695 1,069 708 123 166

which is defined as the number of genes in the intersection
divided by the number of genes in the union. As shown
in Table 4, we can see that the average overlap is typically
close to (or above) 20%, which is larger than the greedy
method as well as the overlap reported in [6] (12.7%).

Computational cost for subnetwork marker identification
In order to evaluate the computational complexity of the
proposed method, we computed the total CPU time that
is needed for identifying the top 50 subnetwork mark-
ers on each dataset. We considered three different values
of α (= 0.2, 0.5, 0.8) that were used in our simulations.
For comparison, we also estimated the total CPU time
for the greedy method that was previously proposed. It
should be noted that the two methods take completely
different approaches for identifying multiple markers. In
our proposed method, all potential subnetwork markers
(whose total number exceeds 50) are simultaneously iden-
tified; hence, we need to rank the potential markers to
select the top 50 markers with the highest discriminative
power. As a result, for our proposed method, the total
CPU time includes the time for calculating the similarity
between genes, potential subnetwork marker identifica-
tion through affinity propagation, and post-processing
and ranking the subnetwork markers. On the other hand,
for the greedy method, we measured the CPU time for
calculating the discriminative power of the genes and iter-
atively searching for the top 50 markers. Since the greedy
method finds one marker at a time, the search process
needs to be repeated to find multiple markers. Figure 1
shows the total CPU time of the two methods for dif-
ferent parameters. All experiments were performed on a

Table 3 Total number of common genes between the top
subnetworkmarkers identified using different α

Dataset α = 0.2∩ α = 0.2∩ α = 0.5∩
α = 0.5 α = 0.8 α = 0.8

USA 1,612 660 561

Netherlands 1,382 646 488

Belgium 767 454 372

Sweden 802 466 387

Table 4 Overlap between the top subnetworkmarkers
identified on different datasets

Dataset Proposedmethod Greedy

(α = 0.5) r = 0.05 r = 0.001

USA - Netherlands 25.10% 8.28% 7.60%

USA - Belgium 19.04% 5.22% 6.09%

USA - Sweden 19.71% 5.32% 5.51%

Netherlands - Belgium 18.11% 8.84% 10.09%

Netherlands - Sweden 18.85% 7.92% 7.78%

Belgium - Sweden 17.13% 11.57% 11.31%

desktop computer with a 3.06 GHz Intel Core i3 CPU and
4GB 1333 MHz DDR3 memory. The results show that the
proposed method is computationally more efficient for
the given task as it can simultaneously identify all poten-
tial markers without repeating the search process multiple
times. Unless one is interested in predicting only a few top
markers, the proposed method provides a clear advantage
over the previous greedy method. Figure 1 also shows that
using different parameters does not affect the overall CPU
time significantly.

Discriminative power of the subnetwork markers
We evaluated the discriminative power of the predicted
subnetworkmarkers by following a similar procedure as in
previous studies [3,4]. For each subnetwork marker iden-
tified using the proposed method, we first inferred its
activity level for the gene expression profile of each patient
and then computed the t-test score of the the inferred
subnetwork activity level. Next, we sorted the subnet-
work markers according to their absolute t-test score in a
descending order.We then computed the average absolute
t-test score of the top K = 10, 20, 30, 40, 50 subnetwork
markers, as shown in Figure 2.
The horizontal axis in Figure 2 corresponds to K , and

the vertical axis corresponds to the mean absolute t-test
score of the top K subnetwork markers. We compared
the discriminative power of the subnetwork markers pre-
dicted by the proposed method with the discriminative
power of the subnetworks predicted by the greedymethod
proposed in [6]. The activity level of these subnetworks
(identified by the greedy method) was inferred based on
the same scheme that was originally used in [6]. As we
can see from Figure 2, the proposed method typically
finds subnetwork markers with comparable or slightly
higher discriminative power compared to the previous
greedy method, although both methods work very well.
In this experiment, the parameter α did not significantly
affect the average discriminative power of the subnetwork
markers identified by the proposed method.
We also investigated the impact of the post-processing

step by comparing the discriminative power of the
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Figure 1 Total CPU Time for identifying the top 50 subnetworkmarkers.We evaluated the computational complexity of the proposed method
by estimating the total CPU time needed for identifying the top 50 subnetwork markers in a given dataset. We compared our method with the
previously proposed greedy method for a number of different parameters.

subnetwork markers before and after post-processing.
Additional file 1: Figure S1 shows the results obtained
using α = 0.5.We can see that the discriminative power of
the top 50 subnetwork markers improves as a result of the
post-processing step, during which we remove the genes
that have relatively lower discriminative power.
Next, to test the reproducibility of the subnetwork

markers identified by the proposed method, we per-
formed cross-dataset experiments as follows. First,
we identified subnetwork markers using the proposed
method on one of the datasets and ranked the markers
based on their absolute t-test statistics score. After rank-
ing the subnetwork markers, we re-evaluated the discrim-
inative power of the top 50 markers on a different dataset.

This experiment allows us to find out how much discrim-
inative power is retained by the top predicted markers in
a different, and independent, dataset. The cross-dataset
experiments are shown in Figure 3 and Additional file 1:
Figure S2, where we can see that the markers identified by
the proposed method remain highly discriminative across
datasets. This is in clear contrast to the subnetwork mark-
ers identified by the greedy method [6], for which we can
typically observe a sharp decrease in discriminative power
when applied to an independent dataset that was not used
for predicting the markers. Interestingly, we can also see
that the proposed method finds effective markers that
retain high discriminative power even on an independent
gene expression dataset profiled on a different microarray

Figure 2 Discriminative power of the identified subnetwork markers.We computed the mean absolute t-test statistics score of the top
K = 10, 20, 30, 40, and 50 subnetwork markers identified by different methods for the following datasets: (a) USA, (b) Netherlands, (c) Belgium,
and (d) Sweden.
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Figure 3 Discriminative power of the identified subnetworkmarkers.We computed the mean absolute t-score of the top K = 10, 20, 30, 40, and
50 markers for all datasets. The markers were identified using the first dataset and their discriminative power was evaluated on the second dataset.
The experiments were performed for the following dataset pairs: (a) USA-Netherlands, (b) USA-Belgium, (c) USA-Sweden, (d) Netherlands-USA,
(e) Netherlands-Belgium, and (f) Netherlands-Sweden.

platform. For example, in Figure 3a, the subnetworkmark-
ers were first identified using the USA dataset profiled on
an Affymetrix chip and then evaluated on the Netherlands
dataset profiled on a custom Agilent chip. Figure 3a
shows that themarkers predicted by the proposedmethod
using the first dataset can also effectively discriminate
between the two class labels based on the gene expres-
sion profiles in the second dataset. Similar trends can
also be observed in Figure 3d,e,f and Additional file 1:
Figures S2b,e.
One interesting observation we can make from these

figures is that a smaller α tends to yield subnetwork mark-
ers that retain their discriminative power relatively better
across independent datasets. This observation makes an
intuitive sense, since a larger α tends to penalize genes
with different discriminative power thereby giving rise to
relatively smaller subnetwork markers that mostly consist
of a few highly discriminative genes thatmay not be neces-
sarily synergistic. This increases the risk of overfitting the

data, thereby degrading the effectiveness of the predicted
markers on other independent datasets.

Evaluating the reproducibility of the predicted subnetwork
markers
In order to evaluate the efficacy of the predicted subnet-
work markers in cancer prognosis, we performed five-fold
cross-validation experiments based on a similar set-up
that has been commonly used in previous studies [3-7].
Considering that our ultimate goal is to identify effec-

tive subnetwork markers that can be used for building
robust classifiers that can accurately predict breast cancer
prognosis, it is important to verify whether the predicted
markers can actually lead to better classifiers whose per-
formance can be reproduced on independent datasets. For
this purpose, we performed the following cross-dataset
experiments.
First of all, we selected one of the four breast can-

cer datasets just for identifying the potential subnetwork



Khunlertgit and Yoon EURASIP Journal on Bioinformatics and Systems Biology 2014, 2014:19 Page 8 of 10
http://bsb.eurasipjournals.com/content/2014/1/19

markers and selecting the optimal feature set (i.e., the
set of markers to be used for building the classifier). To
select the optimal set of features, we randomly divided the
chosen dataset into three folds, where two folds (marker-
evaluation set) were used for evaluating the discriminative
power of the subnetwork markers and the remaining one
fold (feature-selection set) was used for selecting the fea-
tures to be used in the classifier. We used the entire
set for estimating the class conditional probability den-
sity functions that are needed for the pathway activity
inference [4].
We evaluated the discriminative power of all potential

subnetwork markers based on the marker-evaluation set,
selected the top 50 markers, and sorted them according
to their absolute t-test score in a descending order. Ini-
tially, we built a classifier based on linear discriminant
analysis (LDA), where only the top subnetwork marker
was included in the feature set. The classifier was trained
on the marker-evaluation set, and its classification perfor-
mance was assessed by measuring the area under ROC
curve (AUC) on the feature-selection set. Subsequently,
we added the next best subnetwork marker to the feature
set, re-trained and re-evaluated the classifier, and kept
the subnetwork marker only if the AUC increased. We
repeated this process for the top 50 subnetwork markers.

Next, we chose a different dataset to train an LDA classi-
fier (using the markers selected from the first dataset) and
evaluate its performance. For this, the second dataset was
randomly divided into five folds, where four folds were
used for training (without reselecting the features) and the
rest was used for computing the AUC. The entire process
was repeated for 100 random partitions, and we report the
average AUC as the performance measure. Similar exper-
iments have been performed to evaluate the classification
performance of previous methods, including the greedy
subnetwork marker identification method [6] as well as a
number of pathway-based classification methods: Rank-
LLR [5], LLR [4],Mean, andMedian [2]. Eachmethod uses
a different way to infer the pathway activity level based
on the expression levels of its gene members. For exam-
ple, Mean (or Median) method uses the mean (or median)
expression value of the member genes that belong to the
same pathway. LLR and Rank-LLR both utilize the log-
likelihood ratio between different phenotypes based on
the expression level of each member gene. For pathway
markers, we selected the top 50 pathways among the 880
pathways in the C2 curated gene sets in Molecular Sig-
natures Database (MsigDB) [16]. Figure 4 summarizes the
classification performance of different methods, where we
can clearly see that the proposed method leads to more

Figure 4 Reproducibility of various subnetwork and pathwaymarkers. In order to evaluate the reproducibility of various modular markers, we
used the first dataset to identify potential markers and select the optimal set of features and the second dataset to train the classifier (using the
selected features) and evaluate its performance. Average classification performance is shown when the markers were selected based on (a) the USA
dataset, (b) the Netherlands dataset, (c) the Belgium dataset, and (d) the Sweden dataset.
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reliable classifiers with a much more consistent perfor-
mance across different breast cancer datasets.
Finally, we also performed within-dataset experiments

to investigate the performance of the proposed method
and compare it with previous subnetwork and pathway-
based methods. In these experiments, the classifiers were
trained and evaluated on different folds of the same
dataset, where a similar five-fold cross-validation set-up
was used as before. We first selected a dataset and then
randomly divided it into five folds. Four out of the five
folds were used as a training set for building the classifier.
The remaining one fold was used as a test set for eval-
uating the classification performance. The subnetwork
markers were identified using the entire dataset, and not
just the four fold training set, due to the high computa-
tional burden for re-identifying the subnetwork markers
every time for a large number of random partitions. The
results are depicted in Additional file 1: Figure S3. We
can see that classifiers based on subnetwork markers per-
formed significantly better compared to those based on
pathway markers. The main reason for this significant
performance improvement is the substantially increased
coverage of genes, which was the main motivation for
identifying subnetwork markers and using them for can-
cer classification. The proposed subnetwork marker iden-
tification method and the greedy method performed both
well in the within-dataset experiments, although our pro-
posed method outperformed the greedy method in terms
of robustness and reproducibility across different datasets
as we have shown before.

Conclusions
In this paper, we proposed a novel method for identify-
ing robust and synergistic subnetwork markers that can
be used to accurately predict breast cancer prognosis. Our
proposed method utilizes an efficient message-passing
algorithm called affinity propagation [15] to identify gene
subnetworks that consist of discriminative and synergis-
tic genes whose protein products are known to interact
with each other or to be closely located in the protein-
protein interaction network. The proposedmethod allows
us to simultaneously identify multiple mutually exclusive
subnetwork markers that have the potential to syner-
gistically improve the prediction of breast cancer prog-
nosis. Extensive evaluation based on four large-scale
breast cancer datasets demonstrates that the proposed
method can predict effective subnetwork markers with
high discriminative power and reproducible performance
across independent datasets. Furthermore, the predicted
markers can be used to construct robust cancer clas-
sifiers that can yield more consistent classification per-
formance across datasets compared to other existing
methods.

Additional file

Additional file 1: Supplementary material. This supplement contains
figures for additional experimental results. Figure S1. shows the
discriminative power of the subnetwork markers identified by the
proposed method with and without the post-processing step. Figure S2.
contains charts showing the discriminative power of the subnetwork
and pathway markers across different datasets. Figure S3. shows the
classification results of the within-dataset experiments.
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