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Abstract

Network-based analyses are commonly used as powerful tools to interpret the findings of genome-wide association
studies (GWAS) in a functional context. In particular, identification of disease-associated functional modules, i.e., highly
connected protein-protein interaction (PPI) subnetworks with high aggregate disease association, are shown to be
promising in uncovering the functional relationships among genes and proteins associated with diseases. An
important issue in this regard is the scoring of subnetworks by integrating two quantities: disease association of
individual gene products and network connectivity among proteins. Current scoring schemes either disregard the
level of connectivity and focus on the aggregate disease association of connected proteins or use a linear
combination of these two quantities. However, such scoring schemes may produce arbitrarily large subnetworks
which are often not statistically significant or require tuning of parameters that are used to weigh the contributions of
network connectivity and disease association.
Here, we propose a parameter-free scoring scheme that aims to score subnetworks by assessing the disease
association of interactions between pairs of gene products. We also incorporate the statistical significance of network
connectivity and disease association into the scoring function. We test the proposed scoring scheme on a GWAS
dataset for two complex diseases type II diabetes (T2D) and psoriasis (PS). Our results suggest that subnetworks
identified by commonly used methods may fail tests of statistical significance after correction for multiple hypothesis
testing. In contrast, the proposed scoring scheme yields highly significant subnetworks, which contain biologically
relevant proteins that cannot be identified by analysis of genome-wide association data alone. We also show that the
proposed scoring scheme identifies subnetworks that are reproducible across different cohorts, and it can robustly
recover relevant subnetworks at lower sampling rates.
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Introduction1

In recent years, there has been an explosion in genome-
wide association studies (GWAS) of complex diseases [1].
These studies have successfully revealed many genetic
variants conferring susceptibility to disease. However,
GWAS have so far explained a small fraction of the heri-
tability of common diseases and provided limited insights
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into their molecular mechanisms. A commonly cited rea-
son underlying the limitations of GWAS is the com-
plex nature of diseases, i.e., the interplay among multiple
genetic variants in driving disease phenotype. Therefore,
many computational methods have been developed to
integrate the outcome of GWAS and with other biological
such as pathways, annotations, and networks to provide
a functional context for disease association of multiple
genetic variants [2–5].
Among computational methods that aim to identify

multiple genetic variants associated with diseases, iden-
tification of disease-associated functional modules has
been commonly used as a powerful tool to gain insights
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into the system biology of disease mechanisms [3]. These
methods aim to identify highly connected subnetworks
of the human protein-protein interaction (PPI) network
(hence, functional module) that exhibit high aggregate
association with the disease as indicated by the GWAS
p values of associated genetic variants (hence, disease-
associated).
These methods have been shown to be effective in

uncovering the functional relationships among disease-
associated genetic variants for a number of complex dis-
eases, including multiple sclerosis [2], breast cancer and
pancreatic cancer [3], and sleep apnea [6]. Meanwhile,
Vandin et al. proposed a method called HotNet [7] which
uses the mutation data to identify subnetworks in which
genes are mutated in a significant number of patients.
They are using a diffusion process in a PPI network to
identify the significant subnetworks of fixed size which are
covering a maximum number of disease cases. However,
tools like HotNet cannot be directly applied to GWAS
data since the mathematical representation of somatic
mutations cannot be directly translated to the represen-
tation of case-control differences in germline polymor-
phisms.
This problem can be considered a generalization of

community detection. Community detection is a well-
studied problem in network analysis [8–10], and it closely
relates to the graph partitioning problem [11–13]. In
graph partitioning, the objective is to assign each node
to a part such that the edges that are across the parts
are minimized. In our problem, however, the focus is
to find subnetworks that are high-scoring, and many of
the nodes in the network may not be assigned to any
subnetwork. In the identification of disease-associated
functional modules, a key challenge is to define a scor-
ing function that will accurately assess the “interest-
ingness” of a given subnetwork in terms of functional
modularity (network connectivity) and disease associa-
tion. Note that the aim is scoring individual subnetworks
locally rather than globally scoring a partitioning of the
network.
While scoring subnetworks, many of the existing

methods ignore the degree of network connectivity and
score connected subnetworks of the human PPI net-
work using an aggregate of the disease association of
comprising gene products [3, 14, 15]. Alternately, some
methods incorporate network connectivity by using a
linear combination of this aggregate score and the den-
sity of the induced subnetwork, using a free parameter
to adjust the relative contributions of disease associa-
tion and network connectivity [16, 17]. Subsequently, they
identify high-scoring subnetworks using various algo-
rithmic techniques [15, 16] and empirically assess the
significance of these subnetworks based on permutation
tests [2].

Scoring schemes that are based on an aggregate of
individual disease association scores are highly influ-
enced by subnetwork size, i.e., the number of pro-
teins in the subnetwork. Indeed, it has been observed
that existing scoring schemes (e.g., the NODE-BASED
scoring scheme implemented in jActiveModules [15])
produce large subnetworks (containing hundreds of
proteins), which require further computational analyses
for the extraction of their biologically relevant parts [6].
Furthermore, Baranzini et al. [2] systematically show that
if correction for multiple hypothesis testing is handled
properly, such scoring schemes do not yield statistically
significant subnetworks for many diseases. Scoring
schemes that incorporate the degree of network con-
nectivity, on the other hand, require tuning of a free
parameter to adjust the relative contributions of disease
association and network connectivity, making it difficult
to apply these algorithms to cases where no training data
is available. However, this is the case for many applications
since biologically relevant subnetworks for many diseases
are largely unknown.
In this paper, we propose a scoring scheme that (i) inte-

grates disease association and network connectivity in a
parameter-free fashion and (ii) incorporates an approx-
imation of the statistical significance of this integrated
score. The key idea of the proposed method is to assess
the disease association of each interaction in the network
and account for the background disease association as an
approximation to statistical significance. In this respect,
the proposed approach may be thought of a generaliza-
tion of Newman’s [18] measure of modularity, which was
developed for community detection in networks.
We test the proposed scoring scheme on GWAS data

for type II diabetes (T2D) and psoriasis (PS). We use the
T2D dataset to compare the performance of the proposed
method with two most commonly used scoring methods.
Then, we use two independent PS datasets to investigate
the reproducibility of the identified subnetworks across
different cohorts.
Our results show that subnetworks that are scored

highly by the proposed scoring scheme are more likely to
be statistically significant as compared to those that are
scored high by the other two scoring schemes. We also
assess the biological relevance of identified subnetworks
in terms of their inclusion of known disease-related pro-
teins that do not exhibit significant disease association
based on individual analysis of GWAS data. Our results
suggest that the proposed scheme yields parsimonious
subnetworks that contain known proteins, as well as those
that are not individually significant, but are candidates
for further investigation. Moreover, our results show that
the identified subnetworks are robust at lower number
of samples. We also investigate the reproducibility of the
subnetworks across different cohorts.
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Methods
In this section, we first describe the problem setting
for the identification of disease-associated functional
modules. Then, we describe the three scoring schemes we
consider in this study. Subsequently, we describe the algo-
rithms used to identify high-scoring modules according
to this scoring scheme. Finally, we discuss our methodol-
ogy for assessing the statistical significance of identified
high-scoring modules.

Problem setting
The input to the problem of identifying disease-associated
functional modules (DAFM) is a graph G = (V ,E,w)

that represents the human PPI network. Here, V denotes
the set of proteins, E denotes the set of pairwise interac-
tions between these proteins, and w : E → R denotes
edge weights, where w(u, v) represents the likelihood that
proteins u, v ∈ V interact. The likelihood scores for inter-
actions are usually computed by integrating the outcome
of several experimental and computational methods for
detecting and predicting protein-protein interactions. In
this paper, we use an online tool, MAGNET [19], to score
the interactions.
Besides the network, we are given a genome-wide asso-

ciation (GWAS) datasetD = (C,M, g, f ), where C denotes
the set of genomic loci that are assayed, M denotes the
set of samples, g(c,m) denotes the genotype of locus
c ∈ C in sample m ∈ M, and f (m) denotes the phe-
notype of sample m ∈ M. If the phenotype is dichoto-
mous (i.e., f : M → {0, 1} where 1 denotes case
and 0 denotes control), then the disease association of
each variant is computed using the standard statistical
test, e.g. Cochran-Armitage trend test, Fisher’s exact test,
or Cochran-Mantel-Haenszel tests [20]. For quantitative
traits (i.e., f : M → R), association tests such as
Breslow-Day or homogeneity of odds ratio are common to
use [21].
In this paper, our focus is not on assessing the dis-

ease association of each variant. We rather assume that
the statistical significance of the association of each locus
c ∈ C with the disease is given as a p value, denoted
p(c). From these significance values, we compute the sig-
nificance of the association of each gene coding for a
protein v ∈ V by taking the most significant associa-
tion of the variants that lie within the region of inter-
est for that gene. For the experiments reported in this
paper, we define the region of interest for a gene, denoted
N(v) ⊂ C, as the genomic region within 20 kb up-
and downstream the coding region for the gene. We
further log-transform the significance of disease associa-
tion for each gene v ∈ V to obtain disease association
score

rv = max
c∈N(v)

{− log(p(c))}. (1)

The objective of the disease-associated functional mod-
ule (DAFM) identification problem is to identify PPI
subnetworks such that:

• the subnetwork is enriched in proteins that are
associated with the disease,

• the proteins in the subnetwork are functionally
associated with each other.

Consideration of these two criteria together enables iden-
tification of functionally modular processes that are asso-
ciated with the disease. An important challenge in this
regard is to develop scoring schemes to achieve a reason-
able balance between these two criteria so that the subnet-
works that are assigned statistically significant scores are
those that are biologically most meaningful and useful.

Scoring subnetworks
In this section, we describe the three scoring schemes
that are used in our experimental studies. These scoring
schemes are illustrated in Fig. 1. Two of these schemes are
based on existing methods for the identification of active
subnetworks using gene expression data, and these meth-
ods are commonly used in integrating GWAS outcome
with PPI networks. The third is a novel scoring method
that is based on a measure of modularity in networks [10].
Node-based scoring: A popular method for scoring

subnetworks is implemented in JActiveModules [15], a
Cytoscape plug-in for the identification of “active subnet-
works”. This method was originally designed to integrate
gene expression data with PPI networks to identify PPI
subnetworks that are differentially expressed (or “active”)
under a certain condition or phenotype. However, it has
also found common application in integrating GWAS data
with PPI networks to identify disease-associated subnet-
works. It takes as input the individual disease association
scores for all proteins and aims to identify connected sub-
graphs of the PPI network with high aggregate association
score. More precisely, under this scoring scheme, a sub-
network Q ⊂ V that induces a connected subgraph in the
PPI network is scored as follows:

σN (Q) = 1√|Q|
∑
u∈Q

ru. (2)

The NODE-BASED scoring scheme is illustrated in
Fig. 1a. Since this scoring scheme is based on the indi-
vidual disease association of the proteins composing
the subnetwork, we refer to it as NODE-BASED scoring.
Under this scheme, the connectivity of the subnetwork is
imposed as a qualitative constraint to ensure that the pro-
teins in the subnetwork are functionally related. However,
the degree of connectivity, hence the degree of functional
association among the proteins, is not quantified.
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Many studies in the context of a related problem, can-
didate disease gene prioritization, have shown that the
degree of network connectivity provides valuable infor-
mation on the functional relationships between individual
proteins in terms of their association with disease [22, 23].
To this end, taking into account the degree of network
connectivity may lead to the identification of more rele-
vant networks since it may better account for the noise in
the network, as well as the modularity of the processes in
which the proteins are involved together.
Linear combination of node and edge scores : Disease

association and the degree of connectivity in the net-
work are two criteria that are not readily comparable.
Therefore, incorporation of these two criteria into a single
scoring scheme is rather challenging. To this end, scor-
ing subnetworks based on a linear combination of the
two criteria is reasonable, in that it provides a frame-
work in which the relative contributions of the two criteria
are adjusted using a single parameter. Motivated by this
observation, Ma et al. [16] propose the following LINEAR
COMBINATION-based scoring scheme for the identifica-
tion of disease-associated subnetworks:

σL(Q) = λ

∑
u,v∈Q w(u, v)√(|Q|

2
) + (1 − λ)

∑
u∈Q ru√|Q| . (3)

This approach has been shown to be more effective
than NODE-BASED scoring in the context of identify-
ing “active subnetworks” using gene expression data [16].
However, to the best of our knowledge, it has not found
application in the identification of disease-associated sub-
networks using GWAS data. An important drawback of
this approach is its dependence on a tunable parame-
ter, since the objective of DAFM is to find subnetworks
that exhibit statistically significant association with the
disease in an unsupervised manner, and training data
(i.e., “known” disease-associated subnetworks) are rarely
available.
Modularity-based scoring (MOBAS): The objective in

any pattern discovery problem for biological applications
is to discover patterns that are statistically significant.

To this end, it is important to note that “high scor-
ing” does not necessarily mean statistically significant
and a scoring scheme should not be overly conservative
or overly relaxed, since a conservative scoring scheme
may not produce any non-trivial high-scoring patterns
and a relaxed scoring scheme may produce high scor-
ing patterns that are not significant. Here, we argue (and
show in Section 2) that both NODE-BASED and LINEAR-
COMBINATION-based scoring schemes are overly relaxed
in that they lead to the identification of very large subnet-
works that will achieve high scores just because of their
size, since these scoring schemes do not explicitly penalize
for the inclusion of more proteins in the subnetwork.
We here propose a novel scoring scheme that integrates

degree of network connectivity with disease association in
a parameter-free manner by assessing the disease associ-
ation of each pair of proteins (a potential interaction) in
the network. Further, building on Newman’s [10] measure
of modularity for community detection in networks, the
proposed scoring scheme incorporates an approximation
of statistical significance into the scoring of subnetworks
by taking into account the background disease association
scores.
We define the disease association of a pair of proteins

u, v ∈ V as follows:

suv =
{
w(u, v)rurv if uv ∈ E
0 otherwise (4)

Recall that ru indicates the likelihood that protein u
is associated with the disease of interest. Therefore, suv
provides a measure of the disease association of the inter-
action between u and v with the disease;
We then define the disease association score of a given

subnetwork Q ⊆ V as follows:

σM(Q) =
∑
u,v∈Q

suv − r̂uv, (5)

where r̂uv denotes the “background” disease association
score of the interaction of proteins u and v.

Fig. 1 Illustration of existing and proposed scoring schemes. This figure shows the scoring schema for quantifying the disease association of protein
subnetworks: aNODE-BASED scoring, b LINEAR COMBINATION of node scores and edge scores, c the proposedMODULARITY-BASED
(MOBAS) scoring scheme. For each method, the score of subnetwork is computed as an aggregate of all quantities in the figure
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In other words, the disease association of subnetwork
Q ⊆ V is defined as the linear combination of the differ-
ences between the observed and background disease asso-
ciation scores of all potential pairwise interactions in the
subnetwork. Note that, it is assumed that an interaction
exists between every pair of proteins in the background,
therefore any pair of proteins in the subnetwork that do
not interact with each other are penalized by a factor of
their background interaction association scores. For this
reason, groups of proteins that induce a heavily connected
subgraph in the PPI network are favored by this scoring
scheme. Note that, to account for the variance in disease
association scores and network connectivity, it would be
more informative to normalize σM by the standard devi-
ation of the respective variables. However, because of the
dependencies in different variables, this would compli-
cate the definition and the computation of the scoring
function considerably. For this reason, we formulate σM
in a simple form while still incorporating the background
expectations.
To avoid making assumptions on the distribution of dis-

ease association scores, we compute these background
scores empirically for each protein pair. For this purpose,
we randomize the original GWAS data by permuting the
labels of the samples to break the relationship between
the genotype and phenotype, while preserving the distri-
bution of genotypes for each locus and also preserving
the relationship between loci. We repeat the permuta-
tion multiple (N) times such that the number of samples
derived from the distribution is sufficiently large and the
computation is feasible (we use N = 100 in our exper-
iments). For each randomized instance 1 ≤ i ≤ N , we
compute the disease association of gene u on that instance
i as r(i)u using Eq. 1. Subsequently, we compute the back-
ground disease association of interaction between each
gene pair of u and v as

r̂uv =
N∑
i=1

(
r(i)u × r(i)v

)
/N . (6)

Searching for high scoring subnetworks
Subnetwork search queries with combinatorial objective
functions often lead to NP-hard problems. For this reason,
existing methods for identifying disease-associated func-
tional modules use approximation algorithms or heuris-
tics, such as greedy algorithms, simulated annealing [15],
genetic algorithms [16], or linear programming based on
a continuous approximation [17]. Since our focus here
is on the development of a sound scoring function, the
algorithm we use to search for high scoring subnetworks
should be compatible with those implemented by existing
methods, so that the scoring functions can be compared
without any algorithmic bias.

Here, for simplicity, we implement a greedy algorithm
as well. Namely, to find all high-scoring subnetworks, we
search the PPI network by starting from the protein with
most significant disease association, repeatedly examin-
ing the proteins in the neighborhood of the proteins so
far in the subnetwork, and adding to the subnetwork the
protein that provides the best improvement of the subnet-
work score.We repeat these steps until we cannot find any
neighboring protein that improves the subnetwork score.
We further reduce the computational complexity of the
search algorithm by constraining the search space to a
locality in the network (i.e., within two jumps of the first
protein added to the subnetwork). Once a subnetwork
with maximal score is found, we save it as a high-scoring
subnetwork and remove its constituent proteins from the
network. We then repeat the procedure to find other high
scoring modules, until the entire network is exhausted.
Finally, we sort all identified modules according to their
score and assess the statistical significance of their scores.

Assessment of statistical significance
The proposed scoring scheme approximates the statistical
significance of subnetworks by accounting for the back-
ground distribution of disease association. However, the
distributions used in this approximation do not take into
account multiple hypothesis testing, since each subnet-
work is scored independently. Furthermore, only sample
means are incorporated in the scoring function, which
may not account for the variability in the distributions
of network connectivity and disease association. Conse-
quently, high-scoring modules identified using the pro-
posed scoring scheme are not necessarily significant. For
this reason, for all the three scoring schemes that are
considered, we assess the statistical significance of all
identified subnetworks using empirical distributions gen-
erated by running the algorithm on multiple randomized
datasets.
We generate the randomized datasets using two differ-

ent approaches:

1. Random permutation of the phenotypes of samples,
with a view to testing the hypothesis that the high
score of each identified subnetwork arises from the
correlations between genotype and phenotype.

2. Random permutation of the PPI network while
preserving the degree distribution, with a view to
testing the hypothesis that each high-scoring
subnetwork is composed of functionally associated
proteins. To generate random networks with the
same degree distribution as the original network, we
repeatedly swap interactions between randomly
chosen pairs of proteins [24].

Observe that, since the number of hypotheses being
tested is equal to the number of potential connected
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subnetworks of the PPI network, multiple hypothesis
testing poses an important challenge in evaluating the
significance of identified subnetworks. We tackle this
challenge by using the ranking of subnetworks identi-
fied on random datasets to generate a null distribution
for each subnetwork based on its rank on the original
dataset. Namely, for the subnetwork that has the ith high-
est score on the original dataset, we test the hypothesis
that the algorithm could discover at least i subnetworks
with higher or equal score even if the phenotypes and the
interactions in the network were assigned at random.
To be more precise, we generate a sufficiently large

number (M) of randomized datasets for each type of
permutation (i.e., randomized genotype and randomized
PPI). Then, we identify and rank all high-scoring sub-
networks on each dataset. We then assess the statistical
significance of each subnetwork identified on the origi-
nal data by comparing its score against the scores of the
subnetworks that are ranked at least as high as itself on
the randomized datasets. Namely, for subnetwork Qi that
is ranked ith in the original dataset, we take the high-
est scoring i subnetworks from each of the M datasets
and compute the fraction of subnetworks among these
Mi subnetworks whose scores are at least as high as that
of Qi. We call this fraction the q value of the subnet-
work, since it implicitly accounts for multiple hypothesis
testing.
We call a subnetwork is significant only if its q value for

both types of permutation is below a preset q value thresh-
old. We use M = 100 (as a trade-off between feasibility
and statistical power) and a q value threshold of 0.05 in
our experiments.

Software description
MOBAS is implemented in Java and provided in the pub-
lic domain (http://compbio.case.edu/mobas/) as an open
source software. It provides a simple and and easy-to-use
graphical user interface. The software requires four input
files:

• SNP association file (.assoc) which contains the p
value of each SNP with phenotype.

• Mapping file which specifies the mapping of each
SNP to one or more genes.

• PPI file which represents the protein protein
interaction network. The algorithm is designed to
work with a weighted PPI network, which can also be
used to work with unweighted networks.

• A set of SNP association files which provide the
background distribution of individual associations for
SNPs. These files have to be generated by permuting
the label of samples in genome-wide association data
(Since some GWAS pose limitations on data sharing,
we do not provide the permutation service).

MOBAS returns its output as a file that contains the
rank, size, score, and the genes of all the identified sub-
networks. The user can analyze and visualize the subnet-
works using the source code provided on the website.

Results
In order to test the performance of MOBAS, we use mul-
tiple datasets for two different complex diseases: type II
diabetes (T2D) and psoriasis (PS). Since we have GWAS
data for a single cohort for T2D, we use T2D dataset to
investigate the statistical significance of the subnetworks
identified by the proposed scoring scheme and compare
these with those identified by aggregation of node scores
(NODE-BASED) and linear combination of node and edge
scores (LINEAR COMBINATION). Then, we use two inde-
pendent datasets for psoriasis to assess the statistical
significance of the subnetworks identified by the proposed
scoring scheme and investigate the reproducibility and
robustness of the proposed method.
Association analysis for individual SNPs: We compute

the statistical significance of the association of each SNP
with disease using PLINK [25], a well-established toolkit
for whole-genome association analysis.
SNP-gene mapping and association analysis for indi-

vidual genes: To compute the disease-association for
individual genes, we map SNPs to genes by defining
the region of interest (ROI) for a gene as the genomic
region that extends from 20 kb upstream to 20 kb down-
stream of the coding region for that gene. We compute
the disease association of each gene as the minimum
of the p values of the SNPs in the region of interest
for that gene, that is the p value of the most signifi-
cant SNP associated with the gene. We log-transform
these values to obtain a disease association score for each
gene.
Protein-protein interaction (PPI) dataset: We use a com-

prehensive human PPI network downloaded from NCBI
Entrez Gene Database [26]. This database integrates inter-
action data from several PPI databases, including HPRD,
BioGrid, and BIND. The PPI network contains 56,110
interactions among 7692 proteins. We assess the reliabil-
ity of each interaction in this dataset usingMAGNET [19],
a web service that uses logistic regression to assign relia-
bility scores to PPIs.
Biological relevance assessment:We assess the biological

relevance of the identified subnetworks using a literature-
driven list of genes and processes that have been reported
to be associated with diseases. We also perform pathway
enrichment analysis to identify the biological processes
and pathways potentially associated with diseases.We also
investigate the biological relevance of the “novel genes”
identified by the scoring gene, namely those that are not
known to be associated with the disease, do not show
significant disease association according to GWAS data,

http://compbio.case.edu/mobas/
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but are recruited in the significant subnetworks identified
by the proposed scoring scheme.

Results on type II diabetes data
GWAS dataset: To evaluate the performance of the
proposed method, we use a type II diabetes (T2D)
case-control dataset, obtained from Wellcome Trust
Case-Control Consortium (WTCCC) [27]. The T2D data
contains SNP microarray data for 500,000 SNPs on 1999
case and 1504 control samples (1958 British Birth Cohort).
For this dataset, we use the genotype calls provided by
WTCCC, which were obtained by using CHIAMO. SNPs
with >10 % missing genotypes are excluded from the
analyses.
Genes reported to be associated with T2D: In order

to assess the biological relevance of identified subnet-
works, we use a manually curated database of genes that
are reported to be associated with T2D in the litera-
ture [28]. This list contains 286 genes. We also use a
second database that is generated by using seven inde-
pendent computational disease gene prioritization meth-
ods [29], namely GeneSeeker [30], POCUS [31], G2D [32],
PROSPECTR [33], eVOC annotation [34], DGP [35], and
SUSPECTS [36].
Pathway enrichment analysis: We also evaluate the sub-

networks that are found to be significantly associated with
T2D using pathway enrichment analysis. For this purpose,
we use Ingenuity Pathway Analysis (IPA), a commercial
software that uses a manually curated and highly reliable
database of pathway associations to perform pathway
enrichment analysis.

Significance of identified subnetworks
In this section, we investigate the statistical significance
of the subnetworks identified by each scoring scheme.
For this purpose, we compare the scores of highest scor-
ing subnetworks identified on the WTCCC dataset with
that of the highest scoring subnetworks identified on
100 randomized datasets in which (i) the sample pheno-
types are permuted and (ii) PPIs are randomly permuted
while preserving the number of interactions for each
protein.
The results of this analysis are shown in Fig. 2.
The null distribution displayed in Fig. 2 is precisely

the distribution used to compute the q values of each
identified subnetworks, as described in Section 2.
As seen in top row of Fig. 2, the nine highest scoring sub-

networks identified using MOBAS have scores at least one
standard deviation above themean of the top subnetworks
identified on randomized datasets. At a q value threshold
of 0.05, two of these subnetworks are detected to be statis-
tically significant. In contrast, all subnetworks identified
by LINEAR COMBINATION and NODE-BASED scoring are
within one standard deviation of the average score of
the top subnetworks identified on randomized datasets.
In other words, when the existing genotype-phenotype
relationship in the dataset is broken via randomization
of samples, LINEAR COMBINATION and NODE-BASED
still detect subnetworks that score high. The respective q
values are shown in Table 1.
We observe a similar pattern when we compare the sub-

networks identified on the original data to those identified
on randomly permuted PPI networks.

Fig. 2 Statistical significance of subnetworks. Statistical significance of high-scoring subnetworks identified usingNODE-BASED scoring (first
column), LINEAR COMBINATION of node scores and edge scores (second column), andMODULARITY-BASED (MOBAS) scoring (third column).
The highest scoring 20 subnetworks identified using each scoring scheme are shown. The x-axis shows the rank of each subnetwork according to
their score, and the y-axis shows its score. The blue curve shows the scores of the subnetworks identified on the WTCCC-T2D dataset. For each i on
the x-axis, the red (green) curve and error bar in the first (second) row show the distribution of the scores of i highest scoring subnetworks in 100
datasets obtained by permuting the genotypes of the samples (permuting the interactions in the PPI networks while preserving node degrees)
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Table 1 Statistical significance of top two subnetworks. The table shows the q value of top two subnetworks identified using each
scoring scheme according to the permuted genotype and PPI for WTCCC-T2D

Scoring method Size q value in q value in
permuted genotype permuted PPI networks

NODE-BASED
187 0.37 0.45

190 0.70 0.92

LINEAR COMBINATION
41 0.46 0.09

17 0.79 0.52

MOBAS
14 0.04 < 0.01

14 0.05 < 0.01

Baranzini et al. [2] also investigate this issue system-
atically on a number of complex diseases and show
that, while the subnetworks identified by jActiveModules
(NODE-BASED scoring) on some diseases (including mul-
tiple sclerosis and rheumatoid arthritis) are significant,
many subnetworks that are identified for other diseases
are not, including those for T2D. Our results stand as a
reproduction of these results and suggest that the pro-
posed modularity-based scoring scheme does not suffer
from this problem.
To choose significant subnetworks for further inves-

tigation, we require statistical significance in terms of
both disease association and network connectivity. For
this purpose, we compute the q value of each subnetwork
as the maximum of its q values with respect to per-
muted genotype and permuted PPI. Consequently, only
the two subnetworks identified by the proposed method
are deemed statistically significant at a false discovery rate
of q < 0.05.

Biological relevance
In this section, we investigate the biological relevance of
the two statistically significant subnetworks (q < 0.05)
identified by the proposed method. These two subnet-
works are shown in Fig. 3. According to Ingenuity Pathway
Analysis (IPA) software, the top subnetwork (Fig. 3a) is
significantly enriched in Estrogen Receptor Signaling (p <

3.42E − 12) and Glucocorticoid Receptor Signaling (p <

1.19E−3). The second subnetwork (Fig. 3b) is significantly
enriched in Wnt/β-catenin Signaling (p < 0.01) and Cell
Cycle Regulation by BTG Family Proteins (p < 2.2E − 4).
The association between a region of the estrogen

receptor-α (ESR1) gene and T2D is reported in the lit-
erature [37]. Although the p value of its association with
T2D according to GWAS data before correction for mul-
tiple hypotheses is moderate (p < 0.003), this gene
appears in the most significant subnetwork identified by
the proposed algorithm. This subnetwork is significantly
enriched in estrogen receptor signaling pathway, which
is known to play a crucial role on insulin resistance syn-
drome [38]. Glucocorticoid excess in vivo has been shown

to cause decreased insulin sensitivity and insulin recep-
tor binding in target tissues [39]. The first subnetwork
is also enriched in glucocorticoid receptor signaling. As
shown in Fig. 3a, this subnetwork contains nine subunits
of mediator complex which has an important role in reg-
ulating lipid metabolism linked to major human diseases
including type II diabetes [40].
The second subnetwork is enriched in Wnt/β-catenin

signalling, which is a well-known pathway related to T2D.
STRN, STRN4, and PPP2CA are previously reported to
be associated with T2D but do not have significant p
value according to the association analysis for individual
variants (respectively 0.16, 0.19, and 0.12 before correc-
tion for multiple hypothesis testing). The subnetwork
discovered using the proposed scoring scheme reveals
the involvement of these genes in T2D-related processes,
demonstrating that network analysis provides information
beyond what GWAS would detect alone.

Results on psoriasis data
In order to investigate the generalizability of the results
obtained on T2D to a broader set of diseases, we also
perform a similar analysis on psoriasis, a complex auto-
immune disease, for which some genomic factors with
strong association have been already identified (e.g.,
HLA) [41].
GWAS datasets: We use two GWAS datasets for pso-

riasis, one obtained from the database of Genotypes and
Phenotypes (dbGaP) within the framework of the Genetic
Association Information Network (GAIN) [42] and the
other obtained from the Wellcome-Trust Case Control
Consortium (WTCCC) [43]. GAIN genotyped 438,670
SNPs in 1409 European ancestry psoriasis cases and 1436
controls. However, a collection of 950 cases and 692 con-
trols designated as appropriate for general research use.
WTCCC data has 594,224 SNPs in 2178 case samples
recruited from five centers in England, Scotland, and Ire-
land, and WTCCC control samples include 2501 healthy
blood donors from the United Kingdom Blood Service
(UKBS) collection and 2674 individuals from the 1958
Birth Cohort (58C) dataset. Since we are interested in
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Fig. 3 Two significant subnetworks. a Top subnetwork and b second top subnetwork that are found to be significantly associated with T2D. The size
of each node indicates the significance of the association of the corresponding protein with T2D (rv ). The diamond nodes are those previously
reported to be associated with T2D in the literature [28]. The intensity of purple coloring in the nodes indicates the number of computational disease
gene prioritization methods [29] that identified the respective gene to be associated with T2D. The individual p values of each gene in the
subnetwork are shown in the table left of the subnetwork. The genes with insignificant p value (p > 0.05) that are known to be related to T2D are
highlighted in yellow. The genes with insignificant p value and are not reported to be related to T2D are highlighted in orange. These genes are the
candidates for further investigation

assessing the reproducibility of identified subnetworks,
we work on the genomic loci for which genotype infor-
mation is available in both data sets. We filter out the
SNPs with MAF greater than 5 %. The two datasets have
genotype information for 146,213 SNPs in common.

Statistical significance
In this section, we investigate the statistical significance
of the subnetworks identified by MOBAS. For this pur-
pose, we compare the scores of identified subnetworks
with the highest score of subnetworks identified on 100
randomized permutation of samples and also permuta-
tion of interactions in PPI network while preserving the
degree distribution. Figure 4 shows the result of this analy-
sis. The first row shows the significance of the high scoring
subnetworks on the GAIN dataset, and the second row
shows the result on WTCCC dataset. As seen in the first
row of Fig. 4, the first 13 highest scoring subnetworks
identified using MOBAS have scores of at least one stan-
dard deviation above the mean of the top subnetworks

identified on datasets with randomized phenotype. At a
q value threshold of 0.05, seven of these subnetworks are
detected to be statistically significant. The q values are
shown in Table 2. Using the same analysis for permuted
PPI, we find that the first two subnetworks are statisti-
cally significant. The second row of Fig. 4 shows that the
first 16 subnetworks have significantly higher scores com-
pared to randomized phenotype, whereas just the first two
of them are significant compared to randomized PPI. As
demonstrated by these results, the subnetworks discov-
ered on both PS datasets are more significant according
to the randomized phenotype model as compared to the
randomized network model. This observation is concor-
dant with previously reported observations indicating that
there are certain variants with very significant marginal
association with PS [42].

Reproducibility across different cohorts
To investigate whether the identified significant subnet-
works are reproducible, we assess the overlap between



Ayati et al. EURASIP Journal on Bioinformatics and Systems Biology  (2015) 2015:7 Page 10 of 14

Fig. 4 The statistical significance of high-scoring subnetworks usingMOBAS on psoriasis dataset. The highest scoring 16 subnetworks identified
usingMOBAS are shown. The x-axis shows the rank of each subnetwork according to their score, and the y-axis shows its score. The first row shows
the result ofMOBAS on GAIN–PS dataset, and the second row shows the result on WTCCC–PS dataset. The blue curve shows the scores of the
subnetworks identified on the dataset. For each i on the x-axis, the red (green) curve and error bar show the distribution of the scores of i highest
scoring subnetworks in 100 datasets obtained by permuting the genotypes of the samples (permuting the interactions in the PPI networks while
preserving node degrees)

the top subnetworks identified on the two datasets. All
the nodes which are in the top subnetwork identified
on the GAIN dataset are also included in the top sub-
network identified on the WTCCC dataset. These sub-
networks are shown in Fig. 5. In the figure, the green
circles represent the subnetworks identified on WTCCC
and the blue circles represent the subnetworks identified
on the GAIN dataset. The size of each circle represents
the size of the subnetwork, and the number in the circle
shows the rank of the subnetwork among all subnetworks

discovered on the respective dataset. Each edge represents
the overlap between two subnetworks, and the thickness
of an edge represents Bonferonni-corrected significance
of overlap computed based on the hypergeometric distri-
bution. The significant overlap between the top identified
subnetworks on the two datasets shows that the identified
subnetworks are highly reproducible.
To further investigate the contribution of the infor-

mation provided by network analysis on reproducibil-
ity, we also compare the reproducibility of subnetworks

Table 2 Statistical significance (q value) of top subnetworks. The subnetworks are identified usingMOBAS according to the permuted
genotype and PPI on two independent psoriasis datasets

Rank GAIN - PS WTCCC - PS

Size q value in q value in Size q value in q value in
permuted genotype permuted PPI networks permuted genotype permuted PPI networks

1 13 < 0.01 < 0.01 15 < 0.01 0.05

2 8 < 0.01 < 0.01 26 < 0.01 0.06

3 9 0.01 0.23 10 < 0.01 0.12

4 6 0.02 0.38 9 < 0.01 0.14

5 9 0.02 0.33 30 < 0.01 0.47

6 5 0.02 0.33 5 < 0.01 0.51

7 4 0.04 0.33 12 < 0.01 0.49
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Fig. 5 Reproducibility of identified subnetworks usingMOBAS in two independent datasets. The size of the circles represents the size of identified
subnetwork. The thickness of the edges represents the significance of overlap between the two subnetwork based on hypergeometric distribution

identified by MOBAS with that of individual associations.
Table 3 shows the contingency tables comparing the dis-
tribution of individually significant genes on GAIN and
WTCCC datasets and the genes that reside in the sig-
nificant subnetworks. The four tables show in respective
order the overlap between individually significant genes
in GAIN and individually significant genes in WTCCC,
individually significant genes in GAIN and the genes in a
significant subnetwork identified on WTCCC, the genes

in a significant subnetwork identified on GAIN and indi-
vidually significant genes in WTCCC, and the genes in a
significant subnetwork identified on GAIN and the genes
in a significant subnetwork identified on WTCCC. While
constructing this table, an FDR threshold of 0.05 is applied
for a gene or subnetwork to be considered significant.
Furthermore, a subnetwork is deemed significant only
if it is significant according to both null models (per-
muted phenotype and permuted PPI network). We assess

Table 3 The contingency between the individual genes and subnetworks identified on two independent psoriasis datasets

(a) Significant in WTCCC Not Significant in WTCCC

Significant in GAIN 11 1

Not significant in GAIN 28 2927

(b) In significant WTCCC subnetwork Not in significant WTCCC subnetwork

Significant in GAIN 2 10

Not significant in GAIN 13 2942

(c) Significant in WTCCC Not Significant in WTCCC

In significant GAIN subnetwork 6 15

Not in significant GAIN subnetwork 33 2913

(d) In significant WTCCC subnetwork Not in significant WTCCC subnetwork

In significant GAIN subnetwork 13 8

Not in significant GAIN subnetwork 2 2944

The p values of the contingency of each table according to chi-square test are (a) 1.72E-175 , (b) 3.39E-15, (c) 4.32E-28, and (d) 0
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the significance of the association between any two vari-
ables in each table using chi-square test. As seen in the
table, while the overlap between the two datasets is sig-
nificant based on the individual association of genes with
PS, the significance of the overlap is enhanced when net-
work information is added. This observation suggests that
MOBAS is able to recover genes that may not be individ-
ually associated with the disease according to one dataset
but are functionally relevant and can exhibit significant
individual association when other datasets are considered.

Biological relevance
Several genome-wide linkage studies suggest that suscep-
tibility loci for PS are clustered around the HLA region
on chromosome 6p21 [41, 44]. The top subnetwork in
both datasets includes HLA-B and HLA-C genes which
are known to be associated with PS. Other HLA genes,
KLRD1, B2M, and CD8A are also involved in immune
response pathways andmake the top subnetwork enriched
in T cell-mediated immunity process (p value = 8e −
15). The second subnetwork also includes COL3A1 and
PLCG1 which are involved in the immune system path-
ways.

Robustness of the algorithm
The application of GWAS is not limited to identifying
disease-associated variants, and the identification of vari-
ants associated with clinical variables such as response
to treatment would be highly useful for personalized
medicine. However, many studies may not be able to
obtain genotype data for a sufficiently large number of
samples. Therefore, designing an algorithm which is able
to discover relevant associations even with smaller num-
bers of samples is important. In this section, we investigate
whether our results deteriorate significantly with the lack

of samples. For this purpose, we remove a fraction of the
samples preserving the proportion between number of
case samples and control samples. We remove 5, 15, and
50 % of samples of GAIN dataset randomly. We run the
algorithm on the remaining samples and compare the top
subnetworks identified in the incomplete data with the
top subnetworks extracted from the entire set of samples.
We repeat this analysis ten times with different sets of
removed samples. Figure 6 shows the result of this analy-
sis. The x axis shows the rank of subnetworks in original
data. The y axis shows the rank of the subnetwork in
incomplete data which has the maximum overlap with the
original subnetworks. The error bar represents the stan-
dard deviation of the rank of subnetworks in ten different
runs on incomplete data. As seen in the figure, the top
subnetworks are also identified as top subnetworks on
the incomplete data set. These results are promising in
that even with half of the samples, we are able to iden-
tify subnetworks with high overlap with the significant
subnetworks in original data.

Conclusions
In this paper, with a view to facilitating the identification
of disease-associated functional modules, we propose a
novel methodology for scoring PPI subnetworks in terms
of their association with a complex disease of interest
and their network connectivity. Our experimental stud-
ies show that objective criteria for scoring subnetworks
have to be selected carefully to ensure that the algorithms
detect parsimonious subnetworks that are statistically sig-
nificant and robust. In particular, we show that, with a
carefully designed scoring scheme, network analysis is
able to extract knowledge from GWAS data beyond the
scope of the data itself. Namely, the subnetworks identi-
fied by the proposed method contain genes that do not

Fig. 6 Robustness ofMOBAS. The relation between the rank of the subnetwork in original data with rank of the subnetworks in incomplete data in
ten different runs. Different colors represent different percentages of missing samples
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exhibit significant association with the disease based on
analysis of GWAS data but are known to have mecha-
nistic role in the disease and are significant in the other
dataset. Furthermore, the subnetworks identified by the
proposed method include genes that are not yet reported
to have a role in the disease, are not detected to be signifi-
cant by GWAS, but havemolecular functions that indicate
potential involvement in the disease. Our results on psori-
asis show that the subnetworks that MOBAS identified are
reproducible between independent datasets.
The method presented in this paper focuses on a sin-

gle network pattern: dense subgraphs of the PPI network.
However, investigation of different network patterns may
provide additional insights on the relationships between
different disease-associated genes and molecular mecha-
nisms of these associations.

Endnote
1A preliminary version of this article appeared in the

Proceedings of the 17th European Conference on
Evolutionary Computation, Machine Learning and Data
Mining in Computational Biology.
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