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Abstract

Autism spectrum disorder (ASD) is a developmental disorder that significantly impairs patients’ ability to perform
normal social interaction and communication. Moreover, the diagnosis procedure of ASD is highly time-consuming,
labor-intensive, and requires extensive expertise. Although there exists no known cure for ASD, there is consensus
among clinicians regarding the importance of early intervention for the recovery of ASD patients. Therefore, to benefit
autism patients by enhancing their access to treatments such as early intervention, we aim to develop a robust
machine learning-based system for autism detection by using Natural Language Processing techniques based on
information extracted from medical forms of potential ASD patients. Our detecting framework involves converting
semi-structured and unstructured medical forms into digital format, preprocessing, learning document
representation, and finally, classification. Testing results are evaluated against the ground truth set by expert clinicians
and the proposed system achieve a 83.4% accuracy and 91.1% recall, which is very promising. The proposed ASD
detection framework could significantly simplify and shorten the procedure of ASD diagnosis.
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1 Introduction
Autism spectrum disorder (ASD) is a general classification
for a broad range of disorders with a variety of issues stem-
ming from complications with neurological development.
Symptoms of ASD are of varied severity involving difficul-
ties with verbal and nonverbal communication, repetitive
behaviors, and typical social interaction. The defining
features of ASD are deficits in reciprocal social commu-
nication and frequent or intense repetitive or restrictive
behaviors [1]. ASD has a prenatal or early childhood onset
and a chronic course. Although previously considered
rare, ASD is now estimated to occur in approximately 1
in 68 individuals, a threefold increase reported in preva-
lence in 10 years [2]. No conclusions have been reached on
whether the rising prevalence estimates reflect an actual
increase in prevalence or are just an artifact of changes
in screening and diagnosis. Studies also show that ASD is
about four times more common among boys than girls.
Currently, no laboratory test for ASD exists, and the
process of diagnosing the disorder is highly complex and
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labor-intensive, requiring extensive expertise. Clinicians
diagnose ASD based on a variety of factors including
a review of medical records, medical and neurologi-
cal examinations, standardized developmental tests, and
behavioral assessments, such as the Autism Diagnosis
Observation Schedule [3]. Because of the resources and
skill required to assemble and integrate this informa-
tion, few centers offer ASD diagnostic evaluations, and
these centers have lengthy waiting lists, ranging from
2-12 months for an initial appointment.Waiting is not
only stressful for children with ASD and their families,
but it delays their access to early intervention services,
which have been shown to improve outcomes dramati-
cally in many cases [4]. Furthermore, symptoms of ASD
is very similar and can be easily confused with other
mental illnesses whose treatment procedures are very
different such as depression. To simplify the diagnos-
tic process and shorten the waiting time, a computer-
ized method for detecting ASD that requires little or no
expert supervision would be a major advance over current
practice.

We tested the feasibility and potential utility of a novel
method for identifying children who may have ASD: natu-
ral language processing (NLP) with machine learning. The
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greatest challenges of researches on biomedical resources
are the limitations on labeled data scale and data qual-
ity. First, it is not applicable to utilize crowd-sourcing
tools for data labeling such as Amazon Mechanical Turk
(AMT) because of privacy issues, which limits greatly
on the data scale. Second, biomedical data for poten-
tial ASD patients are strictly restricted by privacy issues
and the limited clinical resources for diagnosing ASD as
there are only twelve ASD diagnosis centers in the USA.
Moreover, the data resources which we have access to are
complicated and noisy especially when the data includes
hand-writing and even it is not stored in a usable for-
mat. For this initial study, we had access to the medical
semi-structured and unstructured forms for 199 poten-
tial ASD patients in hand-written format. We converted
all hand-written forms into digital format, extracted de-
identified information from medical records obtained
prior to the initial diagnostic evaluation, and examined
whether our proposed algorithm could accurately predict
which children should or should not receive an ASD diag-
nosis. Predictions are evaluated by an expert clinician in
the Andrew J. Kirch Developmental Services Center at
Golisano Childrens Hospital and confirmed by a stan-
dardized diagnostic instrument, the Autism Diagnostic
Observation Schedule. To the best of our knowledge,
our work is the first to propose a computerized ASD
detection framework based only on hand-written semi-
structured and unstructured medical forms. To be more
specific, the results generated by our proposed frame-
work with high recall values are suitable for identifying
potential ASD patients who need to seek for further
clinical help but shouldn’t be considered as a definite
diagnosis. In particular, our contributions include the
following:

e We propose a robust machine learning approach to
tackle a challenging problem that involves mining
from semi-structured and unstructured medical data
in hand-written format.

e We convert semi-structured and unstructured
medical forms into de-identified text contents in a
ready-to-use format and same converting procedures
can be used to extract information from confidential
hand-written forms in large scales.

e We apply different word embedding models
including the state-of-the-art distributed
representations and establish a promising baseline for
automated ASD detection on such a dataset.

2 Related work

We are in an era of exploring data of all domains such as
multimedia data from social networks, forms and videos
from biomedical domain, and taking advantage of such
data to benefit human lives. For example, researchers have
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used social multimedia data to monitor human’s men-
tal health condition or emotion status. Other researchers
have successfully recognized human sentiments based on
recorded voice [5]. Yuan et al. [6] researched on analyz-
ing users’ sentiment changes over time based on mas-
sive social multimedia data including texts and images
from Twitter, and found strong correlation on sentiments
expressed in textual contents and visual contents . Zhou
et al. [7] integrated unobtrusive multimodal sensing such
as head movement, breathing rate, and heart rate for
mental health monitoring.

Much research has focused on medical applications
and has involved machine-learning techniques. Com-
pared with traditional biomedical diagnostic procedures
which are usually time-consuming, labor-intensive, and
limited to a small scope, new adoption of machine learn-
ing techniques into practical medical applications has
advantages in terms of efficiency, scalability and relia-
bility. For example, Devarakonda and Tsou developed a
machine learning framework to automatically generate an
open-end medical problem list for a patient using lexical
and medical features extracted from a patient’s Electronic
Medical Records [8]. Hernandez et al. [9] explored the
feasibility of monitoring user’s physiological signals using
Google glass and showed promising results. For diag-
nosing ASD, the most relevant data are observations of
the child’s social communication and repetitive behav-
ior. To obtain these data, we focus our research only
on previously acquired records of potential patients, as
these records contain comments about children’s behav-
ior. The most similar work to ours is from [10], who
analyzed digital early intervention records to detect
ASD based on bigram and unigram features. Another
research perspective on automated ASD assessment is to
extract patterns from deficits in semantic and pragmatic
expression [11, 12].

Another family of related work is on learning repre-
sentations of texts, which embed words or documents
into vector space of real numbers in a relatively low
dimensional space such as [13]. Lexical features include
Bag-of-Words (BoW), n-grams (typically bigram and tri-
gram), and term frequency-inverse document frequency
(¢f-idf). Topic models such as Latent Dirichlet Allocation
(LDA) are also used as features in document classification
problems and researches show that topic model outper-
forms lexical features in some cases such as sentiment
analysis [14, 15]. Recent word embedding algorithms
are driven by the development of deep learning tech-
niques. Distributed representations are obtained from a
recurrent neural net language model [16, 17] by explor-
ing the skip-gram model with subsampling of the fre-
quent words and achieved a significant speedup and
obtained more accurate representations of less frequent
words.
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3 ASD detection framework

The biggest challenges in applying machine learning
algorithms to medical studies are limited data scale,
data labeling, and domain knowledge. Patients’ and non-
patients’ data are more difficult to obtain compared with
social media data due to the fact that fewer public biomed-
ical data resources exist. For example, one video for
medical use would require hours of recording and the par-
ticipation of a doctor who has special expertise in such an
area. These data are also kept strictly confidential unless
patients expressly authorize release. In contrast, we can
easily crawl thousands of tweets from Twitter about a
certain topic in one hour. Additionally, data labeling and
result evaluation would be another issue after data collec-
tion. Though crowd-sourcing techniques such as Amazon
Mechanical Turk have been widely used for labeling in
machine learning and computer vision tasks, they are not
feasible for our case because we cannot reveal personal
information to the crowd. We depend instead on reviews
by expert clinicians for data labeling.

In our case, we have collected hand-written medical
forms from parents and service providers of children who
have shown signs of ASD and thus need further rigor-
ous evaluation. Those hand-written forms are far from
a ready-to-use format since they are not even digital-
ized. Thus we first scan all the medical forms and save
them in picture forms on a server that meets our institu-
tion’s stringent standards for maintaining confidentiality
of electronic medical records and that is only accessible
by authorized users for privacy concerns.We then conduct
preprocessing procedures including de-skewing (meaning
that we rotate the skewed scanned medical files to the
right angle), and de-identification (automatically blanking
areas containing personal information). OCR software is
used to convert scanned documents into text contents.
In the next step, we extract features based on the digi-
tal forms and perform classification using support vector
machines to detect children with a high probability of hav-
ing ASD. Features we extracted include lexical features
such as Bag-of-Words, n-gram and term frequency-inverse
document frequency (¢f-idf), topic model (LDA) and dis-
tributed representation based on skip-gram model. Our
proposed framework is shown in Fig. 1.

3.1 Data collection

We have collected semi-structured and unstructured
medical forms of children who have been referred for an
evaluation of possible ASD. We first scan all the medical
forms into digital format (tif) and go through preprocess-
ing. In the next step, we incorporate the OCR software for
recognizing text contents from the scanned documents.
Hand-writing recognition is a well-established prob-
lem and we have experimented with different resources
including Omnipage Capture SDK [18], Captricity [19],
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and ABBYY [20], which to the best of our knowledge
are among the best tools in the market for recognizing
hand-written letters and have been widely used in rec-
ognizing and transforming documents into usable digital
forms [21]. Even so, the results are not satisfactory in some
cases. We then inspect and manually correct data for all
the medical documents that have been processed through
OCR process in this case, which makes data collection
much more time-consuming and labor-intensive.

In this study, we have digitized forms for 199 patients,
with 56 children diagnosed as actual ASD patients (pos-
itive samples) and 143 non-ASD patients (negative sam-
ples). The medical forms we analyzed include: referral
form from primary care physician, parent and teacher
questionnaire, preschool and early intervention question-
naire, and additional forms including phone intake by
social workers. All the forms for each potential patient are
concatenated together and treated as one document for
the classification. Ground truth labels of patients (ASD or
not ASD) are obtained from clinical reports.

3.2 Data preprocessing

A new problem arises by document scanning since
sometimes the scanned forms are skewed. Additionally,
the scanned forms contain personal information such
as names, phone numbers, address and so on. There-
fore, we go through preprocessing procedures including
de-skewing, and de-identification. Such preprocessing
procedure is necessary because OCR SDKs such as
Captricity do not have embedded de-skewing option and
their process involves recognizing documents slice by slice
horizontally. Our preprocessing process improves the
generated results significantly in most cases. By applying
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preprocessing, OCR process and manual correction after-
wards, we are able to reduce the time of data collecting
and converting by about 80%.

De-skewing: We used a simple but effective de-skewing
algorithm: first we compute entropy defined in Eq. 1 based
on the probability that black pixel x appears in line i
denoted by P, (x;) given a skew angle «, which is calcu-
lated as the count of black pixels in line i divided by the
total number of pixels in the same line after skewed at
angle «. We removed pixel lines which has less than 10%
black pixels for two reasons: the value of function Plog(P)
rises with the increase on the value of P over range [0.1,1],
but it acts the opposite way on range [0,0.1); and the
P(x;) value of pixel lines containing text contents is usu-
ally larger than 10% expect for lines with pepper noise.
We then find the optimized solution for o to minimize the
entropy.

HX) == Po(xi) log Py (x;) (1)

De-identification: Since parts of medical forms are semi-
structured, the regions containing personal information
are located in relatively fixed areas for each type of form.
Each form has its own distinctive feature such as edges
in the parent’s questionnaire, which can be used to locate
the areas needed to be de-identified. For unstructured
forms, we manually black out the regions containing per-
sonal information. We use the following Sobel operator to
extract edges of each medical form and automatically de-
identify the information by blanking out such fields. We
apply a pair of 3 x 3 convolution kernels as in Eq. 2.

-101 1 2 1
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4 Learning document representation and
performing document classification

Learning good representations of documents to capture

the semantics behind text contents is central to a wide

range of NLP tasks such as sentiment analysis, and docu-

ment classification as in our case.

4.1 Lexical features

Lexical features are widely used in NLP tasks including
Bag-of-Words model, n-gram model and ¢f-idf. These fea-
tures capture the occurrences of words or phrases and
usually contribute to high dimensional feature space of ten
thousands depending on the dataset.

Bag-of-Words and N-Gram Model: Bag-of-Words
(BoW) model is a common way to represent documents
in matrix form. A sentence or a document is represented
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as a vector of which the number of entities as the dictio-
nary and each entity indicates the occurrence of that word
in the input sentence or document. However, BoW model
captures neither the ordering nor the semantic meanings
of words. N-gram model is similar to BoW model with an
extension from a bag of single words to a bag of, typically
two-words or three-words phrases, know as bigram and
trigram. N-gram model preserves ordering of the words
and captures a better sense of semantics than BoW model.

Term Frequency-Inverse Document Frequency: Both
BoW and n-gram models draw much attention on fre-
quent words with and without preserving the order of
the words, which will be highly in favor of the frequent
stop words such as: a/an, the, and, etc., and results in a
noisy representation of the documents. While Tf-idf is
considered as a weighted form of term frequency and is
a statistical measure used to evaluate how important a
word is to a document. Let ¢f (w, d) donate the number of
times word w appears in document d, where document
d belongs to a document set D, and idf (w, D) indicates
inverse document frequency of word w in the set D, then
tf-idf is defined in Eqs. 3 and 4.

tf —idf = tf(w,d) x idf (w,D) 3)
, B N
dfw, D) = log 1 e e 4yl @)

4.2 Latent Dirichlet Allocation (LDA)

Assuming that each document is a mixture of latent top-
ics, LDA is a probabilistic model which learns P(¢|w), the
probability of word w belongs to a certain latent topic ¢ in
a topic set T (usually with a pre-defined number of topics)
[14]. By normalizing each word vector from a sentence or
a document based on the probabilities of word-topic, we
obtain the sentence or document vector for the topic dis-
tribution and thus embed the target document into a vec-
tor based on LDA model. Compared with lexical features
mentioned above, the document representation learned
by LDA model indicates the distribution of topics given
the input word or document which is in a lower dimen-
sion and focusing more on the latent semantic meaning of
the input texts.

4.3 Distributed Representation (Doc2vec)

Following the work in [16, 17], we extracted the state-
of-the-art distributed representations of the documents.
Contrary to the lexical features, the semantic meaning
conveyed by each word is assumed to distribute along a
word window based on the distributed representations (as
known as doc2vec feature) [17]. The doc2vec is learned
based on the word2vec which can be trained in a Contin-
uous Bag-of-Words (CBoW) or a Skip-gram fashion. For a
word vector learning based on CBoW as shown in Fig. 2,
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given a sequence of N words {wy,wy, ..., wy}, the objec-
tive is to predict the target word w; given the surrounding
words within a window size c:

1 N—c
N Z log p(Wi|Wi—¢, ..., Wite) (5)

i=c

The probability of w; in the objective function is cal-
culated based on the softmax function shown in Eq. 6
where the word vectors are concatenated for predicting
the next word in the content. The Skip-gram model is sim-
ply with the opposite direction of word prediction to the
CBoW model where the objective is to predict the sur-
rounding words given one word as input. Similarly, the
processing of learning the doc2vec vector is maximizing
the averaged log probability with the softmax function
by combining the word vectors with the paragraph vec-
tor p; in a concatenated fashion as shown in Fig. 2. In
our case we choose to learn our document representations
based on the CBoW model following the conclusions that
it extracts better information when the data scale is lim-
ited and generally performs better in later classification
tasks as demonstrated in [17].

(wi ) i (6)
PWilWiigy .. Wige) = =
Zje(l,.‘.,N) e

44 (Classification

Upsampling: Since our dataset is imbalanced in that we
have more negative samples, we upsample the positive
samples before the training process. Our experimental
results show an improvement over results without upsam-
pling which will be discussed later in Section 5. For each
pair of positive samples, we compute their Euclidean dis-
tance, and then find the nearest positive neighbours for

each positive sample. Artificial positive samples are gen-
erated randomly between each positive sample and its
nearest positive neighbours.

Classifier: We use Support Vector Machines (SVM) for
ASD detection. In order to extract discriminative features,
we use lexical features, LDA model and doc2vec features.
These features are useful, but they contribute to a rela-
tively high dimensional space compared with our dataset
scale. Such high dimensional spaces pose potential risk of
overfitting and can reduce the robustness of our system.
Therefore, when dealing with high dimensions, we add
LI-regularization to our objective function to enforce the
sparsity of weights as shown in Eq. 7. On the other hand,
if the feature space is not in high dimensions, such as rep-
resentations extracted from LDA and doc2vec model, we
add L2-regularization term as shown in Eq. 8.

I
2

min |[w|; + C Z (max <0, 1-— yinxi)> (7)

w

i=1
1 d 2

. T T

min Ew w4+ CZ (max (0, 1—yw x,)) (8)

i=1

5 Results and discussion
In this section, we demonstrate preprocessing results and
evaluate our proposed ASD detection framework.

5.1 Preprocessing Results

Due to the page limit, we only show one example of a
particular medical form (referral form from primary care
physician) in Fig. 3 which is a semi-structured form. This
form is clearly skewed to the left with a slight distortion
which makes each line not straight, as demonstrated in
Fig. 3 (left column). Such skewed documents will raise
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Fig. 3 An example of semi-structured medical form (left), after de-skewing (middle) and de-identification (right)

issues when passed to our OCR tools because the OCR
tools will slice the document horizontally before text
recognition and cut the words in the skewed lines in
half. Our entropy-based de-skewing algorithm was able
to find an optimal de-skewing angle and re-orient the
form in a better shape. However, since the distortion
exists, the computed optimal angle only assures the major-
ity of lines and words to be horizontal as shown in the
middle of Fig. 3. The top of this form contains confi-
dential personal information which is kept above the line
of asterisks including name, ID, phone number, etc. Our
de-identification process tracked the line of asterisks auto-
matically and blacked out the region above the line for
as shown in Fig. 3 (right column). Our example in Fig. 3
is a semi-structured form and can be processed in an
unsupervised manner, where we have the knowledge of
document structure and can track the specific areas that
include confidential information. For unstructured forms,
personal information appears randomly on each form and
it’s not feasible to recognize them all using algorithms with
zero miss rate. Therefore we manually smeared the parts
containing confidential information on each unstructured
document and then passed the documents to the OCR
tools to convert them into text contents, which makes our
preprocessing semi-supervised in general.

5.2 Classification results

Lexical features such as BoW, tf-idf and n-gram (we
choose bigram and trigram) generated relatively high
dimensional vector representations of target documents.
We remove stop words (174 in total) such as “a’ “the’,
“is/are’, “he/she’, etc. Our feature extraction results are
shown in Table 1. We used Gensim to build LDA model
and extract doc2vec features because its efficient imple-
mentation and good scalability [22]. We extracted 50, 100,

150, 200, 250, and 300 topics and features, respectively.

Table 1 Number of extracted lexical feature
BolW TF-IDF
4839 4839

N-Gram
9284

Number of Features

We used liblinear with LI-regularized and L2-
regularized classification [23] for our document
classification task. Since there are more negative sam-
ples in our dataset, we upsampled the positive samples
before training. For lexical features, we chose to use
LI-regularized SVM to reinforce the sparsity of feature
space, and L2-regularized SVM for LDA and doc2vec
features. Compared with the total 18962 dimensional
feature space, only 386 weights learned for each feature
are non-zero. We performed 7-fold cross-validation
for evaluation and 5-fold cross-validation to learn the
optimal parameters during the training process. For the
training data of each fold, we generated two artificial
positive samples for each positive sample which resulted
in a more balanced dataset. Tables 2 and 3 and Fig. 4 show
classification results including accuracy, precision and
recall based on BoW, tf-idf and n-gram, and the combina-
tion of three, as well as LDA and doc2vec features. Since
our application emphasizes on the recall over precision,
the F2 scores are also provided (Eq. 9) in Tables 2 and
3. Given performances are different based on different
numbers of features of LDA and doc2vec, we only show
the best in Tables 2 and 3, which are 150 dimensions for
doc2vec and 200 dimensions for LDA with upsampling,
and 150 dimensions for doc2vec and 100 dimensions for
LDA without upsampling.

5 - precision - recall

F2= — ©)
4 - precision + recall
Table 2 Classification results without upsampling
Precision Recall F2 Score
BoW 33.2% 34.3% 34.1%
Tf-Idf 34.9% 36.7% 36.3%
N-Gram 36.7% 38.4% 38.1%
All Lexical Features 37.5% 46.2% 44.2%
LDA 39.7% 52.4% 49.2%
Doc2Vec 47.2% 64.4% 60.0%
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Table 3 Classification results with upsampling

Precision Recall F2 Score
BoW 40.4% 41.1% 40.9%
Tf-Idf 414% 42.9% 42.5%
N-Gram 43.1% 44.6% 44.3%
All Lexical Features 44.4% 42.9% 43.2%
LDA 58.0% 83.9% 77.0%
Doc2Vec 64.6% 91.1% 84.2%

As the results show that our proposed framework was
toned towards a better performance on recall while main-
taining a decent precision and accuracy because we don’t
want to miss out any potential ASD patients. Comparisons
between lexical features shows that the combination of
all lexical features yields the best performance. Both BoW
and #f-idf features perform similarly and n-gram features
alone is very close to the combination of all three. On the
other hand, features extracted using the LDA model show
some improvements in precision and recall over all com-
binations of lexical features, but are neither significant nor
as good as doc2vec features. The reason could be due to
the fact that LDA emphasis on modeling topics from doc-
uments, and the use of LDA has no guarantee to generate
robust document representations [15]. According to our
experiment results, distributed representations provide
the best classification results, and the best performance
is obtained when the number of dimensions is 150. Addi-
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tionally, as it is demonstrated in Fig. 4, more dimensions
for LDA and doc2vec gain little improvements on the per-
formance, if any. For the LDA model we expect there are
not too many topics extracted from the data considering
our data scale, and larger number of topics will render
the effectiveness of the LDA model and add noise in
the learned document vector. The reason for the doc2vec
model is because the doc2vec model is expected to learn a
decent semantic embedding of the documents within low
dimensions, and in our case adding more dimensions will
increase the risk of overfitting considering the scale of our
dataset.

By applying upsampling, the precision and recall for
LDA and doc2vec features raise significantly but only little
improvements are obtained for lexical features. This is
because generally LDA and doc2vec models learn a bet-
ter representation of the documents, and the upsampling
process we proposed enforces the positive samples’ rep-
resentations while the data are well separated. On the
other hand, the lexical features cannot learn features as
effectively as doc2vec and for cases that positive and
negative samples are not well separated such as lexical
features, the proposed upsampling process doesn’t yield
much improvements. The performance will benefit and
become more robust when we provide a more balanced
dataset. Table 4 demonstrates the top 10 features with
the highest absolution weight values based on lexical fea-
tures. These features are very consistent with clinical’s
opinion on the keywords and key phrases regarding ASD

040"
03 r
—6— Acc@LDA
02 0 Precision@LDA
= ® -Recall@LDA
—8— Acc@Doc2Vec
0.1 B Precision@Doc2Vec
= B = Recall@Doc2Vec
0 1 1 1 1 |
50 100 150 200 250 300

Number of Features

Fig. 4 Classification results for LDA and doc2vec features with different dimensions
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Table 4 Top 10 selected features with the largest weights

Positive Negative
Traits Behavioral patterns
Seizures Vocalizes vowel sounds

Attention span Concerns

Physical Actively involved
Disorder Sure

Severely Individual
Sensory Help

Seems Disability

Functionally plays Affection family

Variety Mood swings

diagnosis. However, the weights learned by the classifiers
are not very distinguishable in value between each other,
which shows that the document representations obtained
by lexical features are not sufficient enough for a robust
ASD detection.

6 Conclusions

The reported prevalence of ASD has risen sharply over
the past 25 years and the diagnosis of ASD is highly
time-consuming and labor-intensive. Our proposed ASD
detection algorithm has demonstrated high promise for
detecting ASD based on the patients’ medical forms. Our
method could significantly shorten the waiting time of the
ASD diagnosis procedure and benefit the patients by facil-
itating potential early intervention services which have
been proven to be very useful in many cases. Although
the main focus of this paper is on ASD detection, the pro-
posed NLP based framework can be potentially extended
to other types of health related issues such as depres-
sion, anxiety, etc. For future work, we are working on
computerized generation of an index for ASD patients
indicating the severity of the patients based on their med-
ical data, so that it can be used to monitor their progress
over time. Furthermore, changes in the index could poten-
tially serve as an outcome measure in trials of different
therapies.
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